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Abstract

This document provides a largely self-contained exposition of Chapter 2
from Zimmer’s Ergodic Theory and Semisimple Groups [Zim84], which
introduces ergodicity, basic notions of group actions on measurable spaces,
and Moore’s ergodicity theorem. The main contribution is a detailed
reworking of the original proofs with explicit justifications for steps that
were not fully worked out, along with clarification of assumptions that
were implicit in the original text.

The appendix is divided into two parts: Part A contains the necessary
background material and surrounding mathematical context needed for
the main results, while Part B presents three observations that arose from
my examination of some assumptions that were not completely clear to
me in the original text. These observations, while not central to the main
theory, provide additional insight into the technical details.

The goal is to offer an accessible and rigorous treatment that allows
readers to engage with this beautiful material without requiring extensive
background.
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Notation and conventions

I will use the following conventions.

N  The set of natural numbers, not including 0.
R The one-point compactification of R, R U {co}.

S™  The sphere {x € R"*! : |lz|| = 1} of dimension n.
T™  The n-torus R"/Z".

Let G be a group.

G, The stabilizer of x € X under the action of G on X.
Gzx The G-orbit of x € X under the left action of G on X.
Z(G) The center of G.

Let R be a ring.

SL(n,R) The group of invertible matrices of determinant 1 in R.
SO(n, R)  The group of orthogonal matrices of determinant 1 in R.

Let S be a measure space with measure p, and 1 < p < oo.

LP(S)  The space of p-a.e. equivalence classes of measurable functions
f S8 — Csuch that [g|f[Pdu < oo.

L>°(S) The space of u-a.e. equivalence classes of measurable functions
f S — C that are bounded outside a set of measure 0.

XA The characteristic function of the measurable set A C S.



Introduction

This text is concerned with actions of locally compact Hausdorff groups on
measure spaces. In this setting, the central property we will study is ergodicity,
whose definition will be our first focus.

In particular, we will first introduce some basic vocabulary and notions related
to ergodicity, and explore some of the properties of group actions. This will
constitute Chapter 1.

In Chapter 2, we restrict our attention to a particular class of actions (namely,
lattices in suitable groups acting on suitable spaces), and the main theorem
of the chapter (Moore’s ergodicity theorem) will answer the question of when
such actions are ergodic.

Throughout the rest of the introduction, we briefly present some of the examples
of group actions that will be interesting to us.

Let G be a locally compact Hausdorff topological group. By Haar’s theorem, G
carries a left-invariant Radon measure (a Haar measure), unique up to scaling.
A lattice in G is, roughly speaking, a discrete subgroup I' < G such that the
quotient space G/I" supports a finite G-invariant measure.

Two basic examples are:

o I'=7" <R" = (. The quotient G/I' = R"/Z" is the n-torus T", which
is compact, hence carries a finite invariant measure.

o I'=SL(n,Z) < G =SL(n,R). It is a classical theorem that SL(n,Z) is
a lattice in SL(n,R) (we will not prove this here).

A second basic theme is that transitive group actions are the same thing as
homogeneous spaces. Precisely, suppose G is o-compact and acts continuously
and transitively on a Hausdorff space X. Fix x € X and let G, denote its
stabilizer. The orbit map G — X, g — ¢-x, descends to a continuous bijection
of G-spaces

G/G, — X, 9Gr—> g -1,
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which, under the standing hypotheses, is a homeomorphism. Thus every tran-
sitive G-space is (canonically up to conjugacy of the stabilizer) a homogeneous
space G/H.

The following examples, with G = SL(n,R), are of particular interest.

e For n =2, SL(2,R) acts on the complex upper half-plane by fractional
linear transformations:

b
H? ={2€C: Imz > 0}, (Z Z)wzccfj_—d.

This action is transitive, and identifies H? ~ SL(2,RR)/SO(2,R), since
the stabilizer of i is SO(2,R).

e More generally, for n > 2, SL(n,R) acts transitively on the space of
positive-definite symmetric matrices:

Pln)={AeM,R): A'=A, A>0, detA=1}, g -A=gAg"

This realizes P!(n) as the homogeneous space SL(n,R)/SO(n, R).

These actions induce actions on the boundaries of the spaces. For SL(2,R),
the action extends continuously to the boundary R = R U {00} via the same
fractional linear formulas (with the usual conventions at co). The stabilizer of
oo is the subgroup

P= {(8 ab1> c a€Rsg, be R} C SL(2,R),
and the orbit map identifies the boundary as the homogeneous space
R = SL(2,R)/P.

For general n, SL(n,R) acts transitively on real projective space RP"~! by
projective linear transformations. The stabilizer of the line [e;] € RP™! is the
subgroup

SL(n,R)je,) = {(g j) ca#0,r € R det A= a_l} C SL(n, R),

and hence

RP"! = SL(n, R) /SL(n, R)[¢,].
Moore’s ergodicity theorem will tell us that the action of any lattice I' <
SL(n,R) (for instance, I' = SL(n,Z)) on RP™! is ergodic.



Chapter 1

Ergodicity and smoothness

1.1 Introduction to ergodicity

Throughout this chapter, let G be a locally compact, Hausdorff, second count-
able topological group acting on a standard measurable space (S, %) (see
definition A.1.8 in the appendix) on the left. We assume that the action is
measurable, meaning that the action map GxS — S, (g, s) — g¢s is measurable.
In this case, we write G ~ S and call S a G-space.

Definition 1.1.1 Let u be a o-finite measure on S.

(a) w is called quasi-invariant under the action of G' (or G-quasi-invariant)
if, for all A € Z and g € G, u(g~tA) = 0 if and only if u(A) = 0.

(b) p is called invariant under the action of G (or G-invariant) if, for all
A€ P and g€, plg7tA) = u(A).

Remark 1.1.2 The action G ~ S induces a G-action on the set of (o-finite)
measures on (S, %), namely,

(9, 1) = gup = p(g~"e).
An invariant measure on S is a fixed point of this action.

Recall that two measures are equivalent (see Definition A.2.3) if they have
the same null sets. It is immediately verified that the G-action on the set of
measures on S is well defined on measure classes, that is, GG also acts on the
set of (o-finite) measure classes on S via

(g: (1)) = gelpt] = [gert] = [u(g~"@)].

From this point of view, a measure p is quasi-invariant if and only if its class
(1] is a fixed point under the G-action.

Finally, it is also important to note that any o-finite measure is equivalent to
a probability measure (see Remark A.2.4).



1.1. Introduction to ergodicity

The main definition of the chapter is the following:

Definition 1.1.3 (Ergodicity) Let G and S be as above, and let u be a
quasi-invariant measure under G. The action of G on (S, u1) is called ergodic if
every G-invariant measurable set is either null or conull. That is:

For any A € 4, gA = A for all g € G implies pu(A) =0 or u(S\ A) =0.

Remark 1.1.4 An important fact to note is that if G ~ (S, u) is ergodic,
then G ~ (S, v) will also be ergodic for any v ~ u. Therefore, in this sense,
ergodicity is a question of measure classes.

(1.1.5) Essentially transitive and properly ergodic actions. We will
prove later (Corollary 1.2.15) that orbits of the action G ~ S are always
measurable. With this in mind, we say that an action G ~ (S, p) is essentially
transitive if there exists a conull orbit, that is, an x € S such that u(S\Gz) = 0.

An essentially transitive action is ergodic: if A € & is G-invariant, then either
x € A, in which case Gx C A and A is conull, or z ¢ A, in which case A and
Gz are disjoint, hence A is null.

An action is called properly ergodic if it is ergodic but not essentially transitive.
In this case, ergodicity implies that every orbit is a null set.

Examples 1.1.6 (1) If H < G is a closed subgroup, then there exists a unique
G-invariant measure class on G/H (see theorem A.3.10 in the appendix). The
action of G on G/H is transitive, hence ergodic.

(2) Suppose that S is a smooth manifold and that G acts on S by diffeomor-
phisms. If 1 is a measure on S of the Lebesgue measure class (namely, locally
in the same class as the measure induced by the Lebesgue measure), then p is
quasi-invariant, since diffeomorphisms preserve Lebesgue-null sets.

In particular, if G is a Lie group and H is a closed subgroup, the Lebesgue
measure class on G/H is G-invariant, thus the unique G-invariant measure
class of the previous example.

(3) (Irrational rotations of S!) Let S! = {z € C : |z| = 1} be the unit circle,
let @ € R\ Q be an irrational number, and consider the map R, : S' — S,
2+ 2™z Then R, generates an action Z ~ S' by

(k, z) = RE(2) = el?™hey,

This action clearly preserves the arc length measure of S!. It is not essentially
transitive because all orbits are countable, hence null sets. However, it is
ergodic (thus properly ergodic). Indeed: let A C S! be invariant, and take
xa(2) =,z anz™ to be the L?(S!')-Fourier expansion of its characteristic
function with respect to the Hilbert basis (2")pez. Invariance implies:

Z anzn _ XA(Z) _ XA(ei27rocz) _ Z anei%rnoczn’

nez nez
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so the Fourier coefficients coincide, a,, = a,e?™ for all n € Z. Since a ¢ Q,
an, = 0 for n # 0, which means that y4 is constant almost everywhere,
confirming ergodicity.

(4) Consider the usual action SL(n,Z) ~ R™ by linear maps for n > 2. Since
Z™ is invariant under this action, there is an induced action SL(n,Z) ~ T" =
R" /7"

(v,x+Z") — vz + 7",

and this action is by automorphisms of T". The action SL(n,Z) ~ R preserves
the Lebesgue measure because determinants of elements of SL(n,Z) are all 1.
Therefore, the induced action SL(n,Z) ~ T™ will preserve the Haar (Lebesgue)
measure—more generally, though, any automorphism ¢ of a compact group
K must be measure preserving (see Proposition A.3.5). We claim that it is
also ergodic (hence, again, properly ergodic, because orbits are countable and
countable sets in non-discrete groups are null, see Proposition A.3.4).

To show it, we see T™ as the product of n circles:

T" = {(x1,...,2n) + Z" : 21,...,z, € R}

{(e™ . ey gy x, € R =S x - x SY

Q

and call 7@ = (el2m21 | i27%n) for o = (z1,...,x,) € R" to abbreviate. In
this form, the action of SL(n,Z) is given by

('Y €i27rm) S eiQW'y:p
R .

Now, for A C T™ an invariant measurable set under SL(n,Z), Fourier expand
its characteristic function x4 (e™) = 3", 7 axe2™'% in L2(T™), where k'z
denotes the scalar product. For v € SL(n,Z),

_ . 1 t —1, =17\t
YA (’Y 1. el27rm) _ XA 127r'y w Z a 6127rk Z ak6127r k)x
keZn kezn

so, changing the index of summation to j = (v*)~'k, we finally obtain

XA(’Y 127rr § :(I o e127rj T
JEZ™

Invariance of A yields that for all v € SL(n, Z),
Z akei27rktx _ XA(ei27rac> _ XA(,Y 127rac Z i e127rkt

kezn kezn
hence ax = a,, for all k € Z" and v € SL(n,Z). However, for all k # 0,
the set SL(n,Z)k = {7k : v € SL(n,Z)} is infinite (see Proposition A.9.1).
Since ZZESL(n,Z)k‘ak‘Q = ZZ€SL(n7Z)k\ag]2 < Y peznlarl* < oo, we obtain that
ar, = 0. This implies that y 4 is constant almost everywhere, concluding the
proof for ergodicity.
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(5) Let X = {£1}". Then, X is a compact Abelian group, being the product
of finite Abelian groups. The Haar measure on X is simply the product of the
Haar measures on each factor. Let

H ={z = (z;)ien € X : z; = 1 for all but finitely many 7}.

Then, H is a countable, dense subgroup of X. Moreover, the action of H on
X by multiplication is ergodic (and, again, properly ergodic). To prove this
fact, we resort to character theory (see appendix A.6). By Theorem A.6.2
and Proposition A.6.3, a Hilbert basis for L?(X) is given by functions of the
form p;, - - - p;, , where p; : X — {£1} C S! is the projection on the i-th factor

and i1,...,14, is a (possibly empty) finite sequence of positive integers without
repetitions.
It is clear that for every i1,...,i, non-empty, there exists h € H such that

(piy - - pi, ) (hx) = —(piy -+ pi,)(x) for all z € X. Hence, if A C X is H-
invariant and

Xa(@) =c+ i in(Piy - pin) (@),

then xa(hz) = xa(z) a.e. for all h € H. Uniqueness of Fourier coefficients
implies ¢;,...i, = —Ci,,....i,, = 0 for every non-empty i1, ..., %,, S0 x 4 is constant
almost everywhere, which proves ergodicity.

1.2 Smoothness

We first explore some properties of properly ergodic actions. The author
rightfully points out that proper ergodicity is a phenomenon of complicated
orbits. The first result is the following.

Proposition 1.2.1 Suppose that S is a second countable topological space,
that the action of G is continuous, and that p is a quasi-invariant measure
which is positive on open sets. If the action is properly ergodic, then, for almost
every s € S, Gs is a dense null set.

Proof. Begin by observing that for every W C S open, | gec YW is an open
invariant set, so, by ergodicity, it must be conull. Therefore, if {W;}; is a
countable basis for the topology on S, the set

F= (U

7 geG

is conull, since its complement is the union of countably many null sets.
Furthermore, every point s € F' has a dense orbit, because said orbit intersects
every W;. Indeed: fix s € F and W;. Then, s € UgeG gW;, so s € goW; for

some gg. This implies that g, ls e w;. O
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The following results will as well describe another sense in which proper ergodic
actions induce complicated orbits. We first need a definition.

Definition 1.2.2 (Smooth action) Let S be a countably separated measur-
able G-space (see Definition A.1.5). The action of G ~ S is called smooth if the
quotient measurable structure on the orbit space S/G is countably separated.

We observe that smoothness is a regularity property on the orbit space. The
following important proposition asserts that a proper ergodic action cannot be
smooth.

Proposition 1.2.3 Let G ~ (S, p) be a smooth, ergodic action. Then there
exists a conull orbit.

Proof. First, take v a probability measure on S equivalent to p. It is also
ergodic for the G-action, as observed in Remark 1.1.4. We will find a v-conull
orbit, which will also be p-conull by equivalence.

Let . = {4;}; be a sequence of measurable sets separating points in S/G. We
can assume that . is closed under taking complements —if not, just add to
& all the complements of the A;’s. Let p: S — S/G be the quotient map, and
7 = p,v. Note that for every measurable A in S/G, p~1(A4) C S is a union of
orbits, hence G-invariant. Therefore, 7(A) = v(p~!(A)) € {0,1} by ergodicity.

Let B={A € . : 0(A) = 1}, which is non-empty because . is closed under
complements (hence there exists A € . with full measure). B is a countable
intersection of sets of measure 1, thus #(B) = 1. Now, it suffices to show that
B consists of a single point, because, in that case, p~!(B) would be a conull
orbit. If B contained two distinct points, x and y, there would exist some
A € ¥ that separates them. Then, either A or its complement would have
measure 1, implying that either x or y is not in B, a contradiction. O

Examples 1.2.4 As a quick consequence this proposition, we get that all the
properly ergodic actions discussed in 1.1.6 are not smooth, namely:

(1) The action Z ~ S! by irrational rotations is not smooth.
(2) The action SL(n,Z) ~ T™ is not smooth.
(3) The action H ~ X = {£1}" is not smoth.

The proof for Proposition 1.2.3 also shows the following. It is a small general-
ization of of the fact that invariant measurable functions under ergodic actions
must be essentially constant.

Proposition 1.2.5 Let f : (S, u) — (Y, €), where (S, ) is an ergodic G-space
and (Y,€) is a countably separated space. If f is measurable and G-invariant
(meaning f(gs) = f(s) for all g € G, s € S), then f is constant almost
everywhere, i.e., constant on a conull set.
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Proof. We only need to show that there exists a point ¢ € Y such that f~!(c)
is conull, or, equivalently,

fen(¥ \A{e}) = u(f 1Y\ {e}) = u(S\ f7H(e) =0,

that is, that {c} is conull with respect to f.pu. The proof of 1.2.3 with p = f
shows this. 0

In many situations, one deals with continuous actions. In those cases, the
following proposition provieds a sufficient condition for smoothess.

Proposition 1.2.6 Suppose that G acts continuously on a second countable
Hausdorff topological space S. If every G-orbit is locally closed, then the action
s smooth.

Proof. Let p : S — S/G be the quotient map. We first claim that is open.
Indeed: if U C S is open, p~t(p(U)) = Ugec 9U is also open, hence p(U) is
open in S/G.

Since S is second countable and p is open, S/G is second countable as well.
Thus, to show that S/G with the Borel o-algebra is countably separated, it
suffices to see that any two points can be separated by open sets, because then
any countable basis for the topology on S/G —a countable family of Borel
sets— would separate points.

Take 2,y € S and suppose that p(x) and p(y) are not separated by an open set.
We will first show that Gy C Gz. For this, choose gy € Gy and a neighborhood
U of it. Then, p(U) is open in S/G and contains p(y) so it must also contain
p(x) by assumption. This means that there exists z € U such that Gz = Gz,
so z € Gxr N U. Hence, gy € Gz. Similarly, Gz C Gy.

In particular, Gy is dense in Gz. Since Gz is locally closed, it is open in Gz,
so GyN Gz # 0, so p(y) = p(x). O

This has the following immediate consequence.

Corollary 1.2.7 If a compact group G acts continuously on a second countable
Hausdorff space S, then the action is smooth.

Proof. The hypotheses imply that orbits are compact. Compact sets in Haus-
dorff spaces are closed, hence locally closed. O

In the even more special case that S is a complete separable metrizable space,
smoothness is equivalent to several regularity conditions on the orbits, one of
them being that orbits are locally closed. The following theorem summarizes
the situation.

Theorem 1.2.8 Suppose that G acts continuously on a complete separable
metrizable space S. Then, the following are equivalent:
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(i) The action is smooth.
(ii) All orbits are locally closed.

(iii) For each s € S, the natural map G/Gs — Gs is a homeomorphism, where
Gs C S has the subspace topology.

The proof of this theorem relies on some lemmas, which we present and prove
now.

This first lemma yields the equivalence between (ii) and (iii) by taking S to be
the orbit closure.

Lemma 1.2.9 With the hypotheses above, suppose s € S has a dense or-
bit. Then Gs is open if and only if the natural map ¢ : G/Gs — Gs is a
homeomorphism.

Proof. “ <= ": Suppose that G/Gs — Gs is a homeomorphism. Then, Gs
is locally compact (because it is homeomorphic to a locally compact space)
and Hausdorff (because it is a subspace of a Hausdorff space), and therefore
satisfies the Baire category theorem. Moreover, since G is o-compact, G's
is too, meaning that there exists a compact subset A C Gs with non-empty
interior. This is, there exists an open set U C S such that A D GsNU. But
A is closed in S and Gs is dense, so we get the following:

GsDADGsNUDGsNU =U.

Thus, Gs = GU, which is open in S.

“=": Suppose now that Gs is open in S. We know that ¢ : G/Gs — Gs is
continous and bijective, so it only remains to see that it is open.

The first reduction that we can make is that it suffices to show openness for
the action map ¢ : G — Gs. Indeed: if ¢ is open, take V' an open set in G/Gj,
this means that ¢~!(V) is open in G, where ¢ : G — G /Gy is the quotient
map. Now, (V) = @(¢~1(V)), which is open in Gs.

The second reduction is that it suffices to check openness of ¢ at the identity
e € (G. In fact, we only need to show that if U is a neighborhood of e, then
@(U) is a neighborhood of s in S. This is because left multiplication in G is a
homeomorphism, for any open set V C G and g € V, V = gU for U an open
neighborhood of e. Then, ¢(V) =Vs = (gU)s = g(Us) = gp(U), which is a
neighborhood of gs in S whenever ¢(U) is a neighborhood of s, because G
acts on S continuously. We conclude that (V') is a neighborhood of all of its
points, hence it is open.

The third and final reduction we can make is the following: it suffices to show
that for any compact symmetric neighborhood U of e € GG, Us has non-empty
interior. Namely, if this is the case, let N be any neighborhood of e. Take

10
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U a compact symmetric neighborhood of e with U? C N. Then, if Us is a
neighborhood of us for u € U, then u~'Us will be a neighborhood of s, hence
so will be Ns.

To show that Us has non-empty interior, choose a countable dense set {g;}; € G.
Then Gs = |J; 9;:Us, a union of compact sets (which are closed since G's is
Hausdorff). The Baire category theorem holds for open subsets of complete
metric spaces. In particular, it holds for Gs, so some g;Us has non-empty
interior, hence so does Us. O

The statement (ii) = (i) is Proposition 1.2.6. Hence, it only remains to
establish the converse. So, suppose s € S with Gs dense in S, but such that
G's is not open. Following the same strategy as in the proof of the last Lemma,
1.2.9, we can further assume that G's has empty interior. We aim to show that
S/G is not countably separated.

Since any subset of a countably separated space is itself countably separated,
it would suffice to find a non-countably separated space inside S/G. For this,
we could just take an action—say, of a group H acting on a space X—which is
already known to be non-smooth, together with an injective measurable map
0 : X — S that passes to the orbit spaces, and such that the induced map
X/H — S/G is injective.

This strategy is promising because we have a natural candidate for such an
X, namely the action described in Example 1.1.6 (5). Here, X = {£1}" is
homeomorphic to the middle-thirds Cantor set. It is well known that the
classical construction of the Cantor set in [0, 1] generalizes easily, allowing for
the construction of many injective continuous maps from X into any complete
separable metric space.

However, instead of verifying full injectivity of the induced map X/H — S/G,
we will establish a slightly weaker condition that is nonetheless sufficient for
our purposes, coming from the fact that H acts ergodically on X together with
Proposition 1.2.5.

Lemma 1.2.10 Let H be a group acting ergodically on (X, p), where p has
no atoms (meaning that singletons have measure 0). If I is a measurable space
and f: X — I is an H-invariant measurable map which is countable-to-one,
then I is not countably separated.

Proof. If I is countably separated, Proposition 1.2.5 implies that f is constant
on a conull set. In particular, there exists a countable conull subset of X,
contradicting the fact that p has no atoms. O

Hence, we only need to find an injective continuous map 6 : X — .S such that
(a) 0(Hz) C GO(x) for all x € X, and

(b) 6(X) intersects each G-orbit in, at most, a countable set,

11
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because then, the map X — S/G would be H-invariant and countable-to-
one, proving that S/G is not countably separated. Of course, the rest of the
hypotheses of the lemma are satisfied: H here acts ergodically (see Example
1.1.6 (5)) and the measure on X, being the product of the normalized counting
measures on each factor, has no atoms.

(1.2.11) Cantor space construction on S. For z = (z;) € X, write
pn(x) = (x1,...,2,). Suppose that for each x € X and n € N, there is a
non-empty open set U(xz,n) C S such that

(1) U(z,n+1) CU(x,n),
(2) diam(U(z,n)) < 1/n,
(3) i pu(2) = pu(y), then U(z,n) = U(y,n), and
(4) if pa(z) # pu(y), then U(z,n) N U(y,n) = 0.

Then, for each z there exists a unique point in [,y U(z,n), which we call
O(x). Indeed, existence is a consequence of the completeness of S: any sequence
(Sn)n with s, € U(x,n) is Cauchy by (2), therefore has a limit, which is in
Mpen U(z,n) by (1). Uniqueness comes from the fact that any two points
in (,,cy U(z,n) must be arbitrarily close to each other by (2), hence equal.
From (4), € is injective. Finally, it is continuous: if the distance from y to z is
small enough (namely, p,(y) = pn(z) for some n € N), then from (2) and (3)
it follows that the distance from 6(y) to 6(x) is smaller than 1/n.

Of course, there are many possible choices for U(x, n), but we aim to select them
in such a way that conditions (a) and (b) are satisfied. Let hy, = ((hy):)52; € X

be given by
1, ifi#n
(hn)i = e
-1, ifi=mn,
and suppose additionally that we can choose U(z,n) so that

(5) For each x € X, n € N there exists g(z,n) € G such that for all k < n,
U(zhg,n) = g(z, k)U(z,n),

and

(6) There exists a neighborhood N of e € G such that for all z,y € X with
Pu(@) 7 Pu(y),

(N -U(z,n))NU(y,n) = 0.
Then:

Lemma 1.2.12 Condition (5) implies (a), and condition (6) implies (b).

12



1.2. Smoothness

Proof. H is generated by the h,’s. Therefore, (5) = (a) follows from the fact
that 0(xh,) = g(x,n)0(x), which is obtained by passing condition (5) to the
intersection.

Now, if condition (6) holds, it is clear that for every z € X,

NO(z) N O(X) = {0(x)},

since for any y # x, there exists n € N such that p,(y) # pn(x), and this implies
that (N - U(z,n))NU(y,n) =0, but N(x) C N-U(z,n), and 0(y) € U(y,n),
so 0(y) ¢ NO(x).

Let M be a symmetric neighborhood of e € G such that M? C N, and let
{gi}i be a countable dense subset of G. We have that | J; Mg; = G, since, for
any g € GG, there exists g € Mg, or, equivalently, g € Mgy. Because of this
fact, GO(x) = |J; M gif(x), so we only need to see that Mg;0(x) NO(X) has at
most one point for each 1.

If 9(y) = migif(z) and 6(z) = mag;0(z) for mi,me € M, we have that
0(y) = mimy "0(z) € NO(2) N O(X), hence 0(y) = 0(z). O

We now proceed to show that we can choose U(z,n) such that (1)-(6) hold.
We begin with the following little remark:

Lemma 1.2.13 Let N be a compact symmetric neighborhood of e € G. Then,
for any s € S and any decreasing countable neighborhood basis (W;)ien of s,

[\NW; C Gs.

i

Proof. Let t € [, NWj;, namely, t = limy t;, with ¢, € (), NW;. Write t;, =
JrSk, with g € N and s € Wy. Since the W}’s are a decreasing neighborhood
basis of s, we have that s — s. On the other hand, by passing to a subsequence,
we can assume that g — g € N. Then, ¢t = gs. ([l

We now proceed to construct the desired U(z,n), g(z,n) inductively. Fix a
compact symmetric neighborhood N of e € G. Let I € X denote the identity,
that is, I; = 1 for all . Suppose that we have already chosen U(z, k) and
g(z, k) for all x € X and k < n, so that (1)-(6) hold, and with the following
additional assumptions:

(7) s € U(L k),
(8)

(9) (mh’kv ) = g(:c,k‘)_ , and

(10) for k <m, let T}, : S — S be defined by

as a function of x, g(z, k) depends only on pg(z),

Tk’U(m,k) = g(x, k?), T/Ig|g\uwC Uz,k) = identity.

13



1.2. Smoothness

Then, the g(z, k) are chosen so that H,,, the group of transformation of S
generated by {T} : k < n}, is finite Abelian, and acts simply transitively
on the set {U(x,n): z € X} (which is of cardinality 2").

For n =0, we take U(z,0) = 5, g(x,0) = e for all z.

Now, let (WW;); be a decreasing countable basis of neighborhoods of s (as in
Lemma 1.2.13). Let Gg C G be the set of 2"-fold products of elements of the
form g(x, k), k < n, which is finite. Observe that, as a consequence of (10), for
every T' € Hy and any z € X, there exists some g € Gg such that Ty ) = g

Then, by finiteness of Gy, M = UgeGo gNg~!is a compact symmetric neigh-
borhood of e, so, by Lemma 1.2.13 and the fact that G's has empty interior,
(; MW; is nowhere dense. Thus, as a consequence of the Baire Category
Theorem, there exists some fixed ¢ such that MW; is not dense in U(I, n).
Since Gs is dense, we can pick g(I,n + 1) € G such that

gLn+1)s CU(I,n)\ MW;.

We can hence choose an open set U(I,n + 1) satisfying the following:
seU(Ln+1)CUI,n+1)CUIn).

Uln+1)CW;

gL+ DO+ 1) € U(Ln) \ MW,

diam(gU(I,n+1)) <1/(n+1) for all g € Go U Gpg(I,n+ 1) —the latter
being a finite set.

The remaining choices are clear: given x, pick the unique 7' € H,, such that
U(z,n) = T(U(I,n)) and choose go € Go such that T'|;;,) = go. Define

goU(I,n+1), if 01 =1,

Ula,n+1) = |
gog(Ln+VHU(Ln+1), ifx,y =—1,

and
Ln+1)g7t,  ifzpe =1,
g(zn+1) = 9o9( )gq » e
gog(Ln+1)" gy, if zpp =—1.
It is now clear by construction that the conditions (1)-(10) are satisfied up to
n + 1. This finally gives us the existence of an injective continuous mapping

0 : X — S such that (a) and (b) are satisfied, hence a map f satisfying the
conditions of Lemma 1.2.10.

We now sum up the proof of (i).

Proof. (Proof of Theorem 1.2.8) “(ii) <= (iii)”: Given s € S, take S’ = Gs
(G ~ S’ because the action of G on S is continuous). Applying Lemma 1.2.9
directly to the action G ~ S’ yields the result.

14



1.2. Smoothness

“(ii) = (i)”: This is Proposition 1.2.6.

“(i) = (ii)”: Suppose that Gs, for s € S, is not locally closed. Then, again
taking S’ = G's, we have that G's is not open in S’. By the previous Cantor
space construction and Lemma 1.2.10, S’/G is not countably separated. Since
subsets of countably separated spaces are countably separated (and the o-
algebra on S’/G is the subset o-algebra with respect to S/G), we have that
S/G is not countably separated, i.e., the action is not smooth. O

The end of this section is devoted to the following remarkable theorem and
some of its consequences.

Theorem 1.2.14 Let S be a countably separated measurable G-space. Then,
there is a compact metric space X on which G acts continuously and an injective
measurable G-equivariant map S — X.

Corollary 1.2.15 Let S be a countably separated measurable G-space. Then,
orbits are measurable sets and stabilizers of points are closed subgroups.

Proof. Since G is locally compact, Hausdorff, and second countable, it is o-
compact. In any continuous G-space, orbits are measurable sets when G is
o-compact.

By Theorem 1.2.14, there exists a compact metric space X with a continuous
G-action and an injective measurable G-equivariant map ¢ : .S — X. Since X
is a continuous G-space, all orbits in X are measurable.

For any s € S, we have p(Gs) = Gy(s) by G-equivariance of ¢. Since Gy(s) is
measurable in X and ¢ is measurable, the orbit Gs = p~1(Gp(s)) is measurable
in S.

For stabilizers: since ¢ is injective and G-equivariant, G5 = G ) for any
s € S. In the continuous action on X, stabilizers are closed subgroups, hence
Gy is closed in G. O

Corollary 1.2.16 Any action of a compact group on a countably separated
measurable space is smooth.

Proof. By Theorem 1.2.14, there exists a compact metric space X with a
continuous G-action and an injective measurable G-equivariant map ¢ : S — X.

Since X is a compact metric space, it is second countable and Hausdorff. By
Corollary 1.2.7, the action of the compact group G on X is smooth.

The G-equivariant map ¢ : S — X induces a well-defined map ¢ : S/G — X/G
on the orbit spaces. Since ¢ is injective, ¢ is also injective. Moreover, ¢ is
measurable because ¢ is measurable and the quotient measurable structures
are induced by the respective quotient maps.
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1.2. Smoothness

Since X/G is countably separated (by smoothness of the action) and ¢ is an
injective measurable map, S/G is also countably separated. Hence the action
on S is smooth. O

This corollary shows that there is no “proper ergodic theory” for actions of
compact groups.

Proof. (Proof of Theorem 1.2.14) Let {A;}ien be a sequence of measurable
sets in .S separating points, and let y; denote the characteristic function of A;.

Let B denote the unit ball in L>°(G), equipped with the weak-* topology,
viewing L>°(G) as the dual of L!(G) (this is possible because the Haar measure
of G is o-finite, since G is second countable). Then, by the Banach-Alaoglu
theorem, B is compact. Additionally, L'(G) is separable because G is. There-
fore, since B is the closed unit ball of the dual of a separable Banach space, it
is metrizable with the weak-* topology. Thus B is a compact metric space.

The group G acts on L*°(G) by left translations: (g - f)(h) = (Lgf)(h) =
f(g7h) for f € L°(G), g, h € G. This action preserves the unit ball B and is
continuous with respect to the weak-* topology. To see the continuity, note
that left translation L, on L°°(G) is the adjoint of right translation R,-1 on
LY(G): for f € L°°(G) and ¢ € LY(G),

Wotoh= [ fa™ W= [ Felab) du(k) = Ry 1)

where the second equality uses the substitution & = g~ 'h and left-invariance of
Haar measure. Since R,-1 is continuous on L'(G) (because it is an isometry),
its adjoint L, is weak-* continuous on L*°(G). Thus B is a compact metric
G-space.

Let X =[[;2, B, equipped with the product topology. Since each B is compact
and metric, X is compact and metrizable. The diagonal G-action on X given
v (g (fi)2y) = (g- fi)52, is continuous, making X a compact metric G-space.

Define ¢ : S — X by ¢(s) = (pi(s))52,, where each ¢;(s) € B is given by
[pi(s)](9) = xi(g™'s), g€QG.

First, we verify that ¢ is G-equivariant. For any g,h € G and s € S:

[pi(hs)](9) = xi(g7" (hs)) = xi(g~'hs),

while

[(Lngi(s)](9) = [ei(s)](h"g) = xi((h " g)~'s) = xi(g " hs).

Thus ¢;(hs) = Lpg;(s) for all 4, which means p(hs) = h - ¢(s).
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1.2. Smoothness

Next, we show that ¢ is measurable. Since X has the product topology, it
suffices to show that each coordinate map ¢; : S — B is measurable. For this,
it suffices to show that for any f € L!(G), the map

= (9.0 = [ F@N) duto) = [ F@ts™s) duto)
is measurable. Since (s, g) — f(g9)xi(g~'s) is measurable on S x G, it follows

from Fubini’s theorem that s — [, f(g)xi(g~'s) du(g) is measurable.

Finally, we show that ¢ is injective. Suppose s,t € S and ¢(s) = ¢(t). Then
vi(s) = ¢i(t) for all 4, which means

[0i(5)](9) = li()](g) for almost all g € G

for each i. That is, x;(g~'s) = xi(g~'t) for almost all g € G, for each i.

Since there are only countably many sets A;, the intersection
o
(Ho€G:xilg™"s) = xilg ')}
i=1

has full measure in G. Therefore, there exists some gg € G such that x;(gy ls) =
Xi(go_lt) for all 4. This means that go_ls € A; if and only if go_lt € A; for all 4.
Since the sequence {4;}; separates points in S, we conclude that gy 's = gy 't,
and therefore s = t. O
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Chapter 2

Moore’s ergodicity theorem

2.1 The question

We have seen some examples of ergodicity above. The central question of this
text is whether or not certain naturally defined actions are ergodic, and this
question will constitute the bulk of this chapter. For instance, we want to prove
ergodicity of the boundary action of SL(2,7Z) on R given by fractional linear
transformations, as described in the introduction, and more generally, actions
of lattices in semisimple Lie groups. As remarked in the introduction, R can
be identified with SL(2,R)/P, where P is the subgroup of upper triangular
matrices. Hence, ergodicity of the action of SL(2,Z) on R is a special case of
the following question:

Question 2.1.1 Let G be a semisimple Lie group, and Hy, Hs < G closed
subgroups. When is Hy ergodic on G/Hy?

This itself is a special case of the following.

Question 2.1.2 Let G be a semisimple Lie group, and S an ergodic G-space.
If H < G is a closed subgroup, when is H ergodic on S?

When S is a topological space and the action G ~ S is continuous and
transitive, this is equivalent to Question 2.1.1. Indeed, since G is o-compact,
the orbit map G/Gs — S is a homeomorphism (see [Foll6]).

The following proposition is very useful.

Proposition 2.1.3 Let G be a locally compact Hausdorff second countable
group, S a G-space with quasi-invariant measure pu, and H < G a closed
subgroup. Then, H is ergodic on S if and only if G is ergodic on S x G/H.

Here, G acts on S x G/H diagonally: g - (s,x) = (g9s,gx). The measure class
on S x G/H is the product measure class.

18



2.1. The question

Proof. “ = ”: Suppose H is ergodic on S. We prove that G is ergodic on
S x G/H by contrapositive.

Assume G is not ergodic on S x G/H. Then there exists a G-invariant
measurable set A C S x G/H that is neither null nor conull.

For each € G/H, define the z-section A, = {s € S : (s,z) € A}. We claim
that G-invariance of A implies g4, = Ay, for all g € G and x € G/H.

Indeed, s € gA, if and only if g~'s € A,, which holds if and only if (¢~ s, z) €
A. Since A is G-invariant, this is equivalent to g - (g7 !s,2) = (s,92) € A,
which means s € Ag,. Thus gA; = Ag,.

Since G acts transitively on G/H, we can write G/H = {g-eH : g € G} where
eH denotes the identity coset. By the relation above, for any x = g - eH, we
have Aw = Ag-eH = gAeH-

Now, if A.g were null, then every section A, = gA.y would be null (since the
action preserves the measure class), and by Fubini’s theorem, A would be null,
contradicting our assumption. Similarly, if A,y were conull, then every A,
would be conull, making A conull by Fubini’s theorem.

Therefore, A.p is neither null nor conull. But Acg = hA.yg for all h € H, so
Acpr is H-invariant. This contradicts the ergodicity of H on S.

“<«=": Suppose G is ergodic on S x G/H. We prove that H is ergodic on S
again by contrapositive.

Assume H is not ergodic on S. Then there exists an H-invariant measurable
set B C S that is neither null nor conull.

By the existence of measurable sections (see A.1.12), we can choose a measur-
able section ¢ : G/H — G of the natural projection p : G — G/H, so that
p(p(z)) = for all z € G/H.

Define A = {(s,z) € S x G/H : s € p(x)B}. We claim that A is G-invariant.

Indeed, let (s,z) € A, so s € p(x)B. For any g € G, we have ¢(gx) = gp(x)h
for some h € H. Since B is H-invariant, we have ¢(gx)B = gp(z)hB =
gp(x)B. Therefore, gs € ¢(gx)B if and only if gs € gp(z)B, if and only if
s € ¢(z)B, which shows (gs,gx) € A if and only if (s,z) € A. Thus A is
G-invariant.

Finally, since B is neither null nor conull, then by Fubini’s theorem, A is also
neither null nor conull, contradicting the ergodicity of G on S x G/H. O

Corollary 2.1.4 If Hi,Hy < G are closed subgroups of a locally compact
Hausdorff second countable group, then Hy is ergodic on G/Hy if and only if
Hs is ergodic on G/H;.

Proof. By the above proposition, both statements are equivalent to G' being
ergodic on G/H; x G/Hos. O
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2.2. Irreducible lattices

Moore’s ergodicity theorem completely answers Question 2.1.1 for G a simple
Lie group and H; or Ho a lattice in G. It is formulated in a little more
generality, so that it also provides a complete answer when G is a suitable
semisimple Lie group and T is an irreducible lattice.

2.2 Irreducible lattices

Definition 2.2.1 (Irreducible lattice) Let G be a semisimple Lie group
with finite center and I' < G a lattice. We say that I' is irreducible if for
every non-central normal closed subgroup (equivalently!, every closed normal
subgroup of positive dimension) N, I' is dense when projected onto G/N.

This definition excludes examples such as I'y x 'y < G1 X Go, where the lattice
decomposes as a product corresponding to a factorization of the ambient group.
There are other characterizations of irreducibility for lattices, which show that
a lattice is irreducible, roughly speaking, precisely when it does not come from
such product constructions.

A typical example of an irreducible lattice is the following.

Examples 2.2.2 Let G = SL(2,R)xSL(2,R) and O = Z[/2]. Then, SL(2, O)
is an irreducible lattice in G, viewed as a subgroup of G via the map g
(g,0(g)), where o is the Galois map sending coefficients a + bv/2 to a — byv/2.
For a discussion of this example, see [Zim84, §6.1].

We actually need a more general version of irreducibility, which we preface
with a definition.

Definition 2.2.3 (Irreducible action) Let G = G; X --- X Gj, be a direct
product, where G; is a connected simple non-compact Lie group with finite
center. Let S be an ergodic G-space with finite invariant measure. We say
that the action of G on S is irreducible if for every non-central normal closed
subgroup N < G, N is ergodic on S.

For instance, if G is simple, irreducibility is simply ergodicity.

Proposition 2.2.4 Let G be as in Definition 2.2.3 and I' < G a lattice. Then,
[ is an irreducible lattice if and only if the action of G on G /T is irreducible.

Proof. If N < G is closed and normal, then N is ergodic on G/T" if and only if
I" is ergodic on G/N (Corollary 2.1.4). This, in turn, is equivalent to I being
dense when projected onto G/N by the following lemma. g

Lemma 2.2.5 IfT' < H is a subgroup of a locally compact Hausdorff (second
countable) group H, then I is ergodic on H acting by left multiplication if and
only if I is dense in H.

ndeed, every discrete normal subgroup is central; conversely, the center of G is discrete.
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2.3. Moore’s theorem: statement and consequences

Proof. “==":IfT # H, then I'\H is a non-trivial locally compact Hausdorff
second countable group on which I' acts trivially. Pick disjoint open sets
U,V in T\H. Their preimages 7—(U),7~!(V) under the canonical projection
7 : H — T\ H are disjoint open sets in H, hence of positive Haar measure,
thus neither null nor conull, and I'-invariant, contradicting ergodicity.

“<=": See Remark B.0.4. O

2.3 Moore’s theorem: statement and consequences

We are ready to state some versions of Moore’s theorem and extract some
consequences.

Theorem 2.3.1 (Moore’s ergodicity theorem) Let G =G x---x G, be
a direct product of connected simple non-compact Lie groups with finite center,
and I' < G an irreducible lattice. If H < G is a closed subgroup and H is not
compact, then H is ergodic on G/T.

The proof of this theorem will constitute the final sections of this chapter. The
converse assertion, namely, that if H is compact then H is not ergodic on G /T,
is also true:

Corollary 2.3.2 With H,T',G as in Theorem 2.3.1, " is ergodic on G/H if
and only if H is not compact.

Proof. T being ergodic on G/H is equivalent to H being ergodic on G/I" by
Corollary 2.1.4. Then, one direction is Theorem 2.3.1. For the other direction,
suppose H is compact. Then, ergodicity of H on G/I" implies that some
H-orbit is conull by 1.2.3 and 1.2.7. This is impossible since the H-orbits are
closed submanifolds of strictly smaller dimension, hence null. O

Examples 2.3.3 (1) If I' < SL(2,R) is a lattice, then T is ergodic on R ~
SL(2,R)/P, since P is not compact.

(2) More generally, any lattice in SL(n,R) —like SL(n,Z)— is ergodic on
RP"~1.

(3) SL(n,Z) is ergodic on R™ by the natural action. Indeed, this is equivalent
to SL(n,Z) being ergodic on R™ \ {0}. The latter is a homogeneous space of
SL(n,R), and for a non-zero vector v € R™ its stabilizer is the subgroup

StabSL(mR) (’U) = { <(1) Z) A€ SL(?’L — 1,R)} s

which is non-compact: for n > 3 it already contains the non-compact group
SL(n — 1,R), while for n = 2 it contains the unipotent subgroup {(}%) :
T € R} ~ (R, +). Hence the hypotheses of Moore’s theorem are met in every
dimension n > 2, and the desired ergodicity follows.
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2.4. Translation into a statement about unitary representations

(4) Let H™ be real hyperbolic n-space, realized as the unit ball endowed
with the Poincaré metric, and put G = Isom™ (H") ~ SO%(n, 1), which is
a connected simple non-compact Lie group with finite center. Let I' < G
be a lattice (so that, if " is torsion-free, H"/T" is a finite-volume hyperbolic
manifold with fundamental group I'). Then, every g € G extends to a conformal
diffeomorphism of the boundary sphere S™~1 (for these facts about hyperbolic
geometry, see [BP92]). Fixing a boundary point &, we obtain an identification
S"~1 ~ G/P with P = Stabg(¢). In the upper-half-space model one may take
¢ = oo; then P contains all horizontal translations (z,t) + (z +b,t), b € R"~!
(and vertical dilations), so P is non-compact. Moore’s theorem applies, and T’
acts ergodically on S™ 1.

We will actually prove a more general version of Moore’s theorem, which is
stated in terms of irreducible actions instead of lattices.

Theorem 2.3.4 (Moore’s ergodicity theorem) Let G =G x---x G, be
a direct product of connected simple non-compact Lie groups with finite center,
and S an irreducible G-space with finite invariant measure. If H < G is a
closed subgroup and H is not compact, then H is ergodic on S.

This implies Theorem 2.3.1 putting S = G/T.

2.4 Translation into a statement about unitary rep-
resentations

Moore’s theorem follows from a general fact about unitary representations of
simple Lie groups. This section is devoted to describe this connection.

(2.4.1) Unitary representation associated to G ~ S. Let S be a G-space
with finite invariant measure, where G is locally compact, Hausdorff, and
second countable. For each g € G, let 7(g) : L2(S) — L2(S) be the unitary
operator defined by (7(g)f)(s) = f(g~'s). Then, 7 : G — U(L?*(S)) is a
unitary representation (see Example A.5.5), called the Koopman representation
of Gon §S.

(2.4.2) Ergodicity in terms of the representation. If A C S is measurable
and G-invariant, then x4 € L?(S) is G-invariant, hence so will be its projection
fa onto

L3(S) = {f c1X(5) /Sfduzo},

the orthogonal complement of C in L2(S). If A is neither null nor conull, then
XA is not constant, thus f4 # 0. Therefore, if G is not ergodic, there exist
non-zero invariant vectors on L3(S).

Conversely, suppose that G is ergodic on S and f € L%(S ) is G-invariant. This
means that for each g € G, f(s) = f(g~'s) for a.e. s € S (such f is called
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2.4. Translation into a statement about unitary representations

essentially invariant). One would like to use Proposition 1.2.5 to conclude
that f is constant a.e. on S, but notice that the proposition requires f to be
strictly invariant, not essentially invariant. If G is countable, we could easily
fix this by considering

So=(V{s€8: flg7"s) = f(s)}.

geG

Then, Sp is a G-invariant measurable set, and defining f(s) = f(s) for s € S
and f(s) = 0 for s ¢ Sp, we have that f is strictly G-invariant and f = f
a.e. We can apply Proposition 1.2.5 to conclude that f is essentially constant,
which implies that f is also essentially constant. Since f € L%(S), we must
have f = 0 € L3(S). Thus, for G countable, ergodicity is equivalent to there
being no non-zero invariant vectors in L3(.S).

The following lemma shows that the same is true for general G.

Lemma 2.4.3 Let S be a G-space with quasi-invariant measure i, and Y a
countably generated measurable space. Suppose f :.S — Y is measurable and
essentially G-invariant (namely, that for all g € G, f(s) = f(g~'s) for a.e.
s € S). Then, there exists a measurable function f:8 =Y that is strictly
G-invariant and f: f a.e.

Proof. Since Y is countably generated, it is measurably isomorphic to a Borel
subset of [0, 1] (see A.1.7); we henceforth regard Y C [0, 1].

Let m be a left Haar measure on G. Define
So={s€S: g f(g's) is essentially constant on G}.

Sp is measurable: Let A be a probability measure on G equivalent to m. Define

I(s) = /G f(g™'s) d\(g),

so I: S —0,1] is measurable by Fubini. Let

J(s) = /G Fg™'s) - I(s)] dA(g).

Again by Fubini, J is measurable, and Sy = J~1(0). Hence Sy is measurable.

Since f is essentially G-invariant, for each g € G, u{s € S: f(g7's) # f(s)} =
0. By Fubini’s theorem, m{g € G : f(g~'s) # f(s)} = 0 for p-a.e. s, so Sp is
conull.

Moreover, Sy is G-invariant: if s € Sy and h € G, then g — f(g~1(hs)) is
essentially constant on G. Indeed, we have g — f(g ths) = f((h~1g)71s),
which is essentially constant as g varies (being a composition of the essentially
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constant map k +— f(k~'s) with the m-preserving bijection g ++ h~!g). Thus
hs € Sy.

Finally, define

= I(s), sé€So,
f(s) =
Yo, S ¢ SOJ
where yg is any fixed element in Y. Then, f is the desired G-invariant function
that coincides with f p-a.e. on S. O

Corollary 2.4.4 If S is a G-space with finite invariant measure, then G is
ergodic on S if and only if there are no non-zero G-invariant vectors in L%(S).

Remark 2.4.5 This result is no longer true if the measure on S is not finite,
because for an invariant set A of infinite measure, x4 will not be in L2(9).

An example of this is S = R with Lebesgue measure and G = Z acting by
translations n - * = & + n. This action is clearly not ergodic. However, if
f € L(R) is Z-invariant, we have f(z +n) = f(z) for all n € Z, so f is
1-periodic. But a non-zero 1-periodic function cannot lie in L2(R), hence the
only Z-invariant vector in L3(R) is 0.

We also formulate the following result, generalizing Proposition 1.2.5.

Corollary 2.4.6 If S is an ergodic G-space, Y is countably separated, and
f S =Y is measurable and essentially G-invariant, then f is essentially
constant.

By virtue of Corollary 2.4.4, Moore’s theorem 2.3.4 follows from the following
result:

Theorem 2.4.7 Let G = G1 X --- X G, be a direct product of connected
simple non-compact Lie groups with finite center, and suppose 7 is a unitary
representation of G (on a separable Hilbert space) so that for each G;, |q, has
no invariant vectors. If H < G is a closed subgroup and | has a non-zero
mwvariant vector, then H is compact.

Indeed, assuming Theorem 2.4.7, take m to be the Koopman representation of
G on L3(S). Since the action of G on S is irreducible, each factor Gj is ergodic
on S, hence by Corollary 2.4.4 there are no non-zero G;-invariant vectors in
L2(9), so the hypothesis on 7|, holds. Now if H is not compact, Theorem
2.4.7 implies that 7|y has no non-zero invariant vectors; by Corollary 2.4.4
this is equivalent to ergodicity of H on S. This is precisely Theorem 2.3.4.

Theorem 2.4.7, in turn, is a consequence of the following result, known as the
Howe-Moore vanishing of matrix coefficients theorem:
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2.5. Unitary representations of P

Theorem 2.4.8 (Howe-Moore) Let G;, G, m: G — U(H) be as in Theorem
2.4.7. Then, all matrix coefficients of m vanish at oo, namely, for any £, € H,

(m(g9)&,m) — 0 as g — oo.

Here g — oo means that g leaves compact subsets of G.

Indeed, assuming Theorem 2.4.8, if £ € H is a non-zero invariant vector for
7|z, then the matrix coefficient (7(g)&, ) is constantly positive along H, hence
H is compact, which proves Theorem 2.4.7.

The remaining two sections are dedicated to the proof of Howe-Moore’s theorem,
hence concluding our discussion.

2.5 Unitary representations of P

From now on, Hilbert spaces will be assumed to be separable.

It is necessary to develop first some necessary background in order to prove
Theorem 2.4.8. We will first prove said theorem in the case G = SL(2,R), and
then extend the result to the general case.

To study representations of SL(2,R), we first study representations of the
upper triangular subgroup P < SL(2,R):

P:{<g aljl> :a;éO,bE]R}.

Then, we will use the fact that SL(2,R) is generated together by P and P, the
lower triangular subgroup. The representation theory of P that we need will
follow from its structure as a semidirect product:

poaw - {( ) exh as{(5 0)iaro),

where N ~ (R, +) is normal in P and A ~ (R*,-) < P.

The necessary background for this section is summarized in section A.7 of
the appendix. We begin by studying briefly the representation theory of R™.
Proofs of the following assertions can be found in [Dix69, Mac76, Loo53].

(2.5.1) Irreducible unitary representations of R". Since R" is Abelian
(and because of Schur’s Lemma), all its irreducible unitary representations are
one-dimensional. Hence, the unitary representations of R™ are precisely its
characters (see Section A.6). The characters of R™ are precisely the functions
of the form

N R =St ei<9’t>,
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2.5. Unitary representations of P

for 8 € R™. In other words, if @is the set of all characters of R™, then 6 — Ay
is a group isomorphism R"™ ~ R™.

(2.5.2) Direct integral models. Let p be a o-finite measure on R™ and let

(Ha) g Pe a (piecewise constant) field of Hilbert spaces over Rn (see Appendix

A.7). Form the Hilbert space flg% Hydu(A) and define the representation
T B = U ([2 Hadu()) by

(T D)X =A@ F(N)  (t€R™, AeRn).

Then 7, 3,,) is a unitary representation acting fiberwise by multiplication by
the character \. Equivalently, this construction is the direct integral

S
71'(#,7_“) = //\ (dim’HA) Ad,u()\),

n

where, for a representation o and n € NU {0, 00}, we use the shorthand
n
na::@ai, 0; = 0.
i=1

The following summarizes the representation theory of R™.
Proposition 2.5.3 Let 7w : R” — U(H) be a unitary representation.

(1) There exist a o-finite Borel measure pu on R" and a field (Hx), .z of
Hilbert spaces such that

D
T X W) = /A (dim Hx) Adu(X).

(2) If T(uHy) ond T 3) ore two such direct—integral models, then they are
unitarily equivalent if and only if

(a) w~ ' (the measures are equivalent), and

(b) dimHy = dimH, for p-a.e. X (equivalently, for p/'-a.e. \).

We now consider groups having R™ as a normal subgroup. For that, we want
to study the effect of an automorphism of R" on its representation theory. Let
A :R"™ — R" be a continuous group automorphism. Let o : R®* — R” be its
adjoint automorphism, given by

[aN](t) = MATH(2)).

Moreover, if m : R — U(H) is any unitary representation of R", we let
a(m) : R™ — U(H) be the unitary representation

[a(m)](t) = (AT} (1))

If 7 is given in the form 7 = 7, 3,), we wish to express a(7) in a similar form.
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2.5. Unitary representations of P

Proposition 2.5.4 Let A € Aut(R"), let o : R — R® be its adjoint auto-
morphism, and let ™ = 7, 3,). Then:

(1) a(m) is unitarily equivalent to Mo, m_ ;,)-

(2) If V : fﬂg Hadp(N) — fﬂg% Ho-1) d(asp)(X) is a unitary equivalence
between a(m) and Mo, H, 1,)s then, for every Borel set E C ]1/@,
D D
V([ rmaw) = [ Hendamn.
E o(E)
Proof. (1) Define

52 52
T: . Hadp(A) — . Ho-nd(axp)(N),  (THHN) = fla™'A).

1

Measurability of A — T f(\) is clear since ™" is a Borel bijection of R~

Moreover,
_ 2
271 = [l DI ™) = [ 17O duy,
so T is an isometry. Since « is bijective, (T"1g)(A\) = g(a\) defines the inverse
map, hence T is unitary.
Put 7’ = T H,1,)- For t € R™ and A € R~
(T a(m)(t)f)(N) = (alm)(®)f) (@A)

= (@7']N(AT) fla™tN)

= A(t) fla™'N)

= (7' ()T f)(N),
using (a~*A)(A7') = A(t). Thus T intertwines a(7) with 7/, proving (1).

(2) Let V be a unitary equivalence as in the statement. Then T~V is unitary
and, for all ¢t € R",

(T™'V)a(r)(t) = T a'(t)V = =(t) (T7'V),
i.e. T~V commutes with every a(m)(t), equivalently with every 7(t).

Claim. 7'V commutes with every multiplication operator 7, defined by
(Mo fYA) = 0N f(A), e LZRM).

Proof of the claim. Suppose ¢y — @ pointwise a.e., with || n]|co, [|©]]co < M.
Then, for all f,g € f@ Hadu(A),

(o f0) = /@@Nm (FN), g(0) du()

—— [ oW (f(A),g(N) du(A) = (T f, 9),

N—oo Rn
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2.5. Unitary representations of P

by dominated convergence. Hence m,, — 7, in the weak operator topology.
If 7, commutes with a bounded operator A for all N, then passing to the
limit yields m,A = Am,,.

Therefore it suffices to prove the assertion for ¢ € C° (]1/@) Identify R” with
R™. For N large enough, supp ¢ C (=N, N)". Define ¢y to be the (NZ)"-
periodic function that agrees with ¢ on [-N, N|". Then ¢ — ¢ pointwise,
so it suffices to prove the assertion for each ¢y.

Each ¢p is smooth on the torus R"™/(NZ)™, hence its Fourier series converges
uniformly to ¢n. Consequently, the multiplication operators 7, are oper-
ator-norm limits of finite linear combinations of the multipliers A — A(t)
(the trigonometric polynomials). Since T~'V commutes with every 7 (t), it
commutes with their finite linear combinations and with their operator—-norm
limits. Thus 7'V commutes with Ty for all N, and by the first paragraph
also with m,. This proves the claim.

Apply the claim with ¢ = xg. Then 7, is the orthogonal projection onto

I g? 17-[>\ du()). Since T~V commutes with 7, its range is invariant under
TV, ie.

. o @
([ Hdu) € [ Hduey),
E E
Applying T gives

V([ ) <7 [ rmann) = [t aaio

where the last equality follows from (T'f)(\) = f(a~!\). Finally, applying the
same argument to VT completes the proof. ]

We now apply this proposition to representations of (locally compact, Hausdorft,
second countable) groups having R™ as a normal subgroup. Suppose G is such
a group. Then for each g € G, conjugation by g gives an automorphism of
R™. Therefore, we have an action of G on R” given by (g-\)(t) = A(g~tg).
Similarly, if 7 : R™ — U(H) is a unitary representation of R", we define
(g-m)(t) = (g~ 'tg). Note that Proposition 2.5.4 applies separately for each g
by letting A be conjugation by g.

Proposition 2.5.5 Suppose R™ < G is a normal subgroup, and 7 : G — U(H)
is a unitary representation. Write T|gn as 7(, 3, for some (u,Hy) as in
Proposition 2.5.53. Then:

(1) w is quasi-invariant under the action of G on R,

(2) If E C R" is Borel, let Hp = fga Hrdp(N). Then n(g)HE = Hqgr for
any g € G.

(3) If w is irreducible, then p is ergodic and dim Hy is constant p-a.e.
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2.5. Unitary representations of P

Proof. (1) Fix g € G. For t € R™, w(g~tg) = n(g9)"' 7(t) 7(g), so m(g)
implements a unitary equivalence between 7|gn and g - (7|gn). By Proposition
2.5.4 (1) with A = c4|gn, we have

g- (W’Rn) >~ ﬂ—(g*ﬂng—l)\)'

Since 7lgn =~ g - (7|rn), it follows that m, 3,) =~ T (gt Hy1,)* Applying
Proposition 2.5.3 (2) to these two direct—integral models ylelds [~ Gl Since
g € G was arbitrary, p is quasi-invariant under the G-action on Rn.

In addition, Proposition 2.5.3 (2) also gives dim Hy = dim#H -1, for p-a.e. A,
i.e. the function A — dimH, is essentially G—invariant (and henceforth we

assume A — H) is essentially invariant under G. We will use this below).
(2) Fix g € G. Since p ~ g, let py = Ioer) be a Radon—Nikodym derivative

on @ Define

gu)

2] @
Ty . Hadp(A) — . Hond(ge)(N), (TN = pg(N)2 FN).

Then T} is an isometric surjection by construction and, for ¢t € R",
(Ty (D) F)A) = pgN) 2 A FA) = M) (Tg.))N) = (R(gap 2, 1) (8) Ty )N,

so Ty intertwines 7(,, 3;,) with T (gupt, Hy—1,)" Consequently, Ty 7(g) : g (ﬂRn) ~
T(gup Hy1,) is a unitary equivalence. Applying Proposition 2.5.4 (2) with a« = g

gives, for every Borel £ C ]1/@,

D
Ty e = [ Hyond(aa)
g

1/2

Finally, since (7,)~! acts fiberwise by multiplication with p, /~, we have

‘1(/; Hg-1x d(g*u)(A)) =HyE

Therefore 7(g) Hg = HyE, as claimed.

(3) Suppose 7 is 1rredu01ble If o were not ergodic, there would exist a Borel G-
invariant set £ C R” which is neither null nor conull. Then H E= f  Hadp(N)
is a non-zero proper closed subspace of [ %\ dy, and, by part (2), it is
G-invariant: 7(9)Hg = Hge = Hg for all ¢ € G. This contradicts the
irreducibility of m. Hence u is ergodic.

By the discussion after part (1), the function A — dim #) is essentially G-
invariant. Since it is measurable, ergodicity of u implies that it is essentially
constant, i.e., constant u-a.e. ]
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2.5. Unitary representations of P

We are now ready to apply this discussion to the case of P = AN.

Theorem 2.5.6 Let m be a unitary representation of P = AN on H. Then,
one of the following holds:

(1) w|n has non-trivial invariant vectors.

(2) For g € A and any vectors §,n € H, (m(g)§,n) — 0 as g = oo (in A).

Corollary 2.5.7 Let w be a unitary representation of P. Then any A-
mvariant vector is also P-invariant.

Proof. (Proof of Corollary 2.5.7) Let W ={{ € H:m(n)§ =¢ for all n € N}
be the subspace of N-invariant vectors. Since N is normal in P, for p € P and
n € N we have pnp~! € N, hence 7(n) n(p)é = 7(p) n(p~tnp)é = w(p)¢ for

£ € W. Thus W is P-invariant, and so is W+.

Consider the representation on W+. By definition it has no non-zero N-
invariant vectors, so we are in case (2) of the theorem above. In particular,
there are no A-invariant vectors in W+: if € W' were A-invariant then
(m(a)n,n) = ||n||? for all a € A, contradicting the vanishing conclusion in (2).

Let ¢ € H be A-invariant and write &€ = & + & with & € W and & € W+,
Since W and W' are A-invariant, & is also A-invariant; by the previous
paragraph, &, = 0. Hence & = £y € W is N-invariant. As A and N generate
P = AN, £ is P-invariant. d

Proof. (Proof of Theorem 2.5.6) Identify N ~ R. Write 7|y = 7, %,) as in
Proposition 2.5.3.

If u({0}) > 0, then Hgy # {0} and consists of N-invariant vectors, so we are
in case (1).

Assume now p({0}) = 0. We prove (2). The action of A on N by conjugation
is given by
-1 _ _(a O
g-ny-g  =mn,e forg= (Oa,l) €A,

hence on N ~ R we have (with our convention g - A(t) = A(g~'tg))
g-s=a"3s, s eR.

Let E, F C R\ {0} be compact sets. Then for g € A with |a| sufficiently large
we have (¢g- E)NF = 0.

Fix unit vectors f,h € f]g Hxdp(X) and € > 0. Since p({0}) = 0, there exist
compact sets E, F C R\ {0} with

Ixef— fll <e, Ixrh —h|| <e.
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2.6. Vanishing of matrix coefficients

(Indeed, since || f(\)||%, |R(A\)||? € L (i) and p({0}) = 0, choose 0 < § < M so
that f|,\|<5Hf()\)”2dM+ f‘/\|>MHf()\)H2du <e? andset E= {5 < |\ < M},
similarly for h.) Then, for any g € A,

(7 (9).f, B)—(m(9) (X £)s xrh) | = [(w(9)(f = xf).h) + (m(9)xpf. b — xrh)]
< |ln(9)(f = xe )l 1] + I7(9)xefl Ih — xrh|
<|If = xefl+Ilh — xrhl < 2.

By Proposition 2.5.5 (2), 7(9) Hg = Hgr. Choosing g € A with gE N F = (),
we have Hyr L Hp, hence

(m(9)(xef), xrh) = 0.

Therefore |(7(g) f, h)| < 2¢ for all such g. Since € > 0 was arbitrary, (7 (g)f, h) —
0 as g — oo in A. This is (2). O

2.6 Vanishing of matrix coefficients

We begin with the proof of Howe-Moore’s Theorem (Theorem 2.4.8) for G =
SL(2,R), which will be used to prove the general case.

(2.6.1) Cartan decomposition. Let us first recall the polar decomposition
of a matrix. If T' € SL(n,R), then we can write 7' = US for U orthogonal
and S symmetric positive definite. Since S is symmetric, it is orthogonally
diagonalizable, namely, there exists an orthogonal matrix Uy such that S =
Uy DUy ! where D is diagonal and its diagonal entries are positive. Hence, any
T € SL(n,R) has an expression T' = U1 DU,, where U; € SO(n,R) and D is a
positive diagonal matrix. Thus, we can write

SL(n,R) = KAK,

where K = SO(n,R) is compact and A is the group of positive diagonals. This
is called the Cartan decomposition of SL(n,R).

Lemma 2.6.2 Let G be a (locally compact Hausdorff second countable) group
admitting a decomposition G = KAK with K compact and A a closed subgroup.
Let m be a unitary representation of G. If for all matriz coefficients f of m one
has f(a) — 0 as a — 0o, a € A, then all matriz coefficients of m vanish at co
on G.

Proof. Fix &,m € H and set f(g) = (n(g)&,n). Note that for g = kjaky we
have

f(9) = (m(9)€,m) = (m(a) m(k2)E, m(k1) ™).
Suppose by contradiction that f does not vanish at co on G. Then there exist
e >0 and g, — oo in G with |f(g,)| > € for all n. Write g, = k1 panksa, with
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2.6. Vanishing of matrix coefficients

kinm € K, ap, € A. By compactness of K, passing to a subsequence, we may
assume kg, — k and kl_}L — k' in K.

Since 7 is strongly continuous, we have 7(k2,)¢ — 7(k)¢ and 7(ky )"ty —
7(k")n. Hence for n large,

[(m(gn)€,m) — (m(an)m (k)¢ m(K)n)| < 5,

so [(m(an)¢ )| > /2 with & = w(k)¢, 1’ = w(K)n.

Finally, if (a,) were contained in a compact subset of A, then (g,) would be
contained in the compact set K - ({ay}) - K, contradicting g, — oo. Thus
a, — 00 in A, and we have found a matrix coefficient along A that does not
vanish at oo. This contradicts the hypothesis, completing the proof. 0

We prove now Theorem 2.4.8 for G = SL(2,R).

Theorem 2.6.3 If 7 is a unitary representation of G = SL(2,R) with no
mwvariant vectors, then all matrixz coefficients of m vanish at co.

Proof. By Lemma 2.6.2, it suffices to prove vanishing along the diagonal
subgroup A. By Theorem 2.5.6, it is enough to show that m|x has no non-zero
invariant vector.

Suppose, towards a contradiction, that 0 # & € H is N-invariant. Define
f:G—=Chby f(g) = (7(9)&,&). Then f is continuous and bi-N-invariant: for
ni,ng € N,

f(nignz) = (m(n1)m(g)m(n2)€, &) = (m(9)&. &) = f(9)-

Right N-invariance implies that f descends to a continuous function ¢ : G/N —
C, and left N-invariance makes ¢ N-invariant for the left action of N on G/N.

In G = SL(2,R), N is the stabilizer of e; = (1,0)" under the natural linear
action on R?. Hence the orbit map G — R%\ {0}, g — g - e1, induces a
G-equivariant homeomorphism G/N ~ R?\ {0}. Under this identification, the

left action of N on G//N corresponds to the usual matrix multiplication of N
on R?\ {0}.

The N-orbits in R? \ {0} are precisely: (i) each horizontal line {(z,y) : y = c}
with ¢ # 0, and (ii) the points on the z-axis {(z,0) :  # 0} (since N acts by
(x,9) — (z + by,y)). Any continuous function on R?\ {0} which is constant
on these orbits must be constant on the z-axis.

Under G/N ~ R?\ {0}, the x-axis corresponds to P/N C G/N. Hence ¢ is
constant on P/N, i.e., f is constant on P. Since 7 is unitary, for any p € P
we have [|7(p)¢|| = ||€]|, and by Cauchy—Schwarz,

(D)€, ) < lIm)El €l = llgN.
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Constancy of f on P gives (m(p)&,€) = ||€]|?, so we have Cauchy—Schwarz
equality, hence 7m(p)¢ = ¢(p) £ with |c(p)| = 1. Plugging back into f yields
¢(p) = 1, hence 7(p)¢ = £ for all p € P. Thus ¢ is P-invariant, and consequently
f is bi-P-invariant.

Finally, P has a dense orbit on G/P (identify G/P ~ RP! and note that P
acts transitively on the open cell), hence a continuous bi- P-invariant function
on G must be constant. Therefore f is constant on G, which forces £ to
be G-invariant, contradicting the hypothesis. This proves that 7|y has no
non-zero invariant vector, and the theorem follows. ]

Now, we prove it for G = SL(n, R).

Theorem 2.6.4 If 7 is a unitary representation of G = SL(n,R) with no
mwvariant vectors, then all matrix coefficients of ™ vanish at oco.

Proof. Let A < G be the subgroup of diagonal matrices. We write an element

ac€Aasa=(a,...,a,), meaning a = diag(a,...,an), [[1=;a; = 1. Let B
be the set of matrices b = (¢;;) with ¢;; =1, ¢;5 = 0 for i > 2, i # j, namely,
1 by by -+ by
o1 0 --- 0

B=<Sb=|(0 0 1 - 0 f.pecR
0 0 O 1
We denote such an element by b= (1 by --- b,). A direct calculation shows
that for a = diag(ai,...,a,) € A and b € B,
1 Hby %bg e by
0 1 o --- 0
abat=|[0 0 r -0 € B.
0 O 0 1

Hence aBa~! = B for all a € A. It follows that H = AB is a subgroup of G and
that B is normal in H. The group B is isomorphic to R* ™! via b <+ (ba, ..., by).
By Lemma 2.6.2, it suffices to prove that the matrix coefficients of 7|4 vanish
at oo. In the SL(2,R) case we achieved this via the representation of P; here
we analyze the representation of H = AB.

Identify B~Rn-1~ R By Proposition 2.5.3, we can write

71"3 = T, Hy) ()\ERn_l),

—

where  is a o-finite Borel measure on R?~1 and H, is a measurable field of
Hilbert spaces. By Proposition 2.5.4, the adjoint action of a € A on B induces

the pushforward a.u on R”~! and acts on fibers by Hy +— H, 1.
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Since aba~! scales the coordinates by (a1/a;)b; (for j =2,...,n), the induced

—

action on R*1 is
(a-)\)j:‘;—;)\j, j:2,,n

Let E,F C ]@L?1 be compact sets disjoint from the coordinate hyperplanes
{\; =0}, 5 =2,...,n. Then for a € A outside a sufficiently large compact
set we have (a- E) N F = (. Arguing exactly as in the proof of Theorem
2.5.6 (using Proposition 2.5.5 (2)), we deduce: if ,u(U?:Q{)\j =0}) =0, then
all matrix coefficients of 7|4 vanish at co. By Lemma 2.6.2, this implies the
theorem.

Therefore, it remains to show that pu({\; = 0}) > 0 is impossible for each
j=2,...,n. Fixie€{2,...,n} and suppose u({\; = 0}) > 0. Consider the
subgroup

Blz{bEB ijOfOI‘aHj?éi},

which is isomorphic to R. In the direct—integral model for 7|g, the subspace
53
Hir=0) = / Hadu(N)
{ri=0}

is non-zero and Bj-invariant (indeed, \; = 0 means B; acts trivially on the
fiber). Define the closed subgroup H; < G by

a 0 -~ B - 0 )
0 1 0 0

H, = R ad—py=1p ~SL(2,R),
00 -~ 0 --- 1

7

where the only possibly non-trivial entries outside the diagonal lie in the
2 x 2 block on rows/columns {1,¢} (all other off-diagonal entries are 0, and
all remaining diagonal entries are 1). In particular, B; < H; corresponds to
a=0=1,v=0, 8 €R. Thus B; < H; < G and B; is non-compact in H;.

Restrict m to H;. We obtain a unitary representation of H; ~ SL(2,R) with a
non-zero Bj-invariant vector. By Theorem 2.6.3 (applied inside H;) and the
fact that B; is non-compact, this forces the existence of a non-zero H;-invariant
vector. In particular, the diagonal subgroup

Ai=H,NA~ {diag(al,...,an):alai =1, a;=1(# 1,i)}

has non-trivial invariant vectors.

Let
W={{eH: n(a)§ = forallae A}
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be the subspace of A;-fixed vectors. It suffices to show that W is G-invariant.
Indeed, the representation my of G on W has kernel containing A;; by simplicity
of G = SL(n,R), this forces ker myy = G, so every vector in W is G-invariant,
contradicting our assumptions.

We now prove G-invariance of WW. For k # j, let By; < G be the one-
dimensional unipotent subgroup

1 )

Bkj: :beR

1

7

where the only off-diagonal entry that may be non-zero is in row k, column j
(all diagonal entries are 1). Consider two cases.

(a) If k ¢ {1,i} and j ¢ {1,4}, then By; commutes with A;, hence preserves
W.

(b) If {k,j} N{1,i} # 0, then A; normalizes By;. Indeed, writing by; € By; for
the matrix with (k, j)-entry equal to b € R and all other off-diagonal entries
0 (and 1’s on the diagonal), and a = diag(as,...,a,) € A; (so aja; = 1 and
ag =1 for £ ¢ {1,i}), we have

aby; at= b;gj, with (k,j)-entry b’ = Ok, €R.
aj
In particular, when {k,j} = {1,i} we get
abyat= b}; with entry o' = a3b, abiat= b, with entry o' = af2b,

so the 2—dimensional subgroup A;Bjy; (resp. A;B;1) is isomorphic to P = AN
(resp. its opposite), via

. _ al 0 1 b
A; > diag(a, 1,...,a 1,...,1)»—>< _>, b1->—>< )
' 1 0 a! ' 01

By Corollary 2.5.7, every A;—invariant vector is then By;— (or B;;—) invariant.
For the remaining possibilities with exactly one of k,j in {1,i}, choose a
permutation matrix p € K sending that pair of indices to {1,7}. Then w(p)W
is pA;p~!-invariant; applying the previous argument to the representation
conjugated by p shows that m(p)W is Byj)p(;)-invariant. Conjugating back by
p yields that W is Bjj—invariant. Hence in all cases By; preserves W.

Finally, A; < A and A is Abelian, so it preserves W. Since G is generated by
A together with all the subgroups By, it follows that W is G-invariant. This
completes the proof. O
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2.6. Vanishing of matrix coefficients

Finally, we sketch the proof of the general case, which goes very similarly as
the above.

Proof. (Proof sketch of Theorem 2.4.8) Let G be as in the theorem. For defi-
nitions and basic facts about the following argument, check section A.8 of the
Appendix. Fix a maximal R-split torus A < G, and write a = Lie(A). We
have the root space decomposition (A.8.7)

0=009 Pt go=1{Xeg: [HX]=a(H)X VH € a},

acX
where ¥ C a* \ {0} is the root system.

As in Proposition A.8.13, there exists a semisimple G’ such that A < G’ < G,
G’ is closed in G, A is a maximal R—split torus of G’, and its Lie algebra is

¢ = ao @,

acy
where all the g/, are one-dimensional.

As in Proposition A.8.14, choose a set S C ¥ of linearly independent positive
roots such that a* = span(S) and a+ 5 ¢ ¥ for all o, € S. The Lie

subalgebra
b= Do
a€Ees

is Abelian, so B = exp(b) < G’ is an Abelian subgroup normalized by A;
moreover, dim B = |S| = dim A. Finally, exp : b — B is a diffeomorphism,
hence we can identify B ~ R4™ A Indeed: first observe that for each X € b,
adg (X) is nilpotent by construction of b (write X = ) _«caXs and note
that each summand satisfies [Xq, gj] C g,,, 5 for fixed 8 € X, so ady (X)"(g})
is zero for n large enough). Furthermore, B N Z(G’') = {e}, because any
z = exp(X) € BNZ(G') satisfies id = Adg (exp X) = exp(ady (X)), but this
forces ady (X) = 0 by nilpotency of ady (X), hence X = 0 by semisimplicity
of ¢/, and z = exp(0) = e. This lets us identify B ~ Ad¢/(B) and b ~ adg (b).
But adgy (b) is nilpotent, hence exp : ady (b) — Adgr(B) is a diffeomorphism.

The representation of AB can be analyzed exactly as in the SL(n,R) case
by applying Proposition 2.5.3 and Proposition 2.5.4. As in the rank—one
reductions (using the embedded SL(2,R)’s generated by ¢/, and a, = RH,),
we obtain that either all matrix coefficients along A vanish at oo, or there
exists a one—parameter subgroup Ag < A and a non-zero vector fixed by Ayg.

Tc;jllitify the rank—one step uniformly, one may work in the universal covering
SL(2,R) of the SL(2, R)-subgroups if needed: for N < SL(2,R), its connected
lift N < SL(2,R) is still isomorphic to N, and the argument proving that
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2.6. Vanishing of matrix coefficients

A-invariant vectors are N—invariant (Corollary 2.5.7) carries over by lifting
the P = AN-action and projecting back.

Finally, as in the SL(n,R) proof, set W ={{: 7(a)§ =& Va € Ap}. The root
subgroups U, either commute with Ag or, together with Ay, generate a copy of
P, ~ AN inside the corresponding SL(2,R); by Corollary 2.5.7 they preserve
W. Since G’ is generated by A and the root subgroups Uy, it follows that W
is G'-invariant. Now write G = [[, G; with each G; simple and non-compact,
and note that Ag < G; for some factor ;. Applying the previous argument
inside Gj shows that W is Gj—invariant, hence 7|g; has a non-zero invariant
vector, contradicting the hypothesis of the theorem. Therefore, only the first
alternative can occur, and all matrix coefficients of 7 vanish at cc. ]
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Appendix A

Preliminaries

A.1 Measurable spaces

The following two sections are dedicated to collecting some definitions and
basic facts about measure theory. For an extended presentation on the basics
of measure theory, check [Coh13].

Definition A.1.1 (Measurable space) Let X be a set. A collection % of
subsets of X is called a o-algebra if it contains the empty set, is closed under
complements, and closed under countable unions. In this case, (X, %) is called
a measurable space. If & is any family of subsets of X, the smallest o-algebra
containing &7 is called the o-algebra generated by <.

Remark A.1.2 Every topological space X is a measurable space with the
Borel o-algebra % generated by open sets. Any B € 4 is called a Borel subset
of X.

Definition A.1.3 (Measurable maps) A map f : (X,%) — (Y,%) be-
tween measurable spaces is called measurable if f~1(C) € £ for every C € €.
It is called a (measurable) isomorphism if it is bijective and both f and f~!
are measurable.

We will introduce additional methods for defining a o-algebra on a given set,
as outlined in the following definition.

Definition A.1.4 (Constructions) (a) Let X be aset, (Y, %) a measurable
space, and f : X — Y a mapping. The pullback o-algebra f*% is the coarsest
o-algebra that makes f measurable, namely,

¢ ={f4c):ce%s}.

In particular, whenever X is a subset of a measurable space (Y, %), we define
the subspace o-algebra on X to be the pullback o-algebra under the inclusion
mapi: X — Y.
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A.1. Measurable spaces

(b) Let (X, %) be a measurable space, Y a set, and f: X — Y a mapping.
The pushforward o-algebra f,. 2 on Y is the finest o-algebra that makes f
measurable, that is,

fB={CCY:f1C)e B}

In particular, whenever ~ is an equivalence relation on a measurable space X,
we define the quotient o-algebra on X/ ~ to be the pushforward o-algebra
under the quotient map p: X — X/ ~.

Definition A.1.5 Let X be a measurable space.

(a) X is called countably separated if there exists a countable family of
measurable sets {A;}; which separates points in the following sense: for
any two distinct points x,y € X, there exists an A; such that z € A;
and y ¢ A;,or x ¢ A; and y € A;.

(b) X is called countably generated if it is countably separated by a family
{A;}; which also generates the o-algebra.

Remark A.1.6 (1) Measurable subsets of countably separated (resp. gener-
ated) spaces are countably separated (resp. generated). One can check this by
intersecting the family of separating sets with the measurable subset.

(2) Any second countable T topological space is countably generated. Indeed,
the countable basis for the topology (which generates the Borel o-algebra)
separates points: if x # y, then there exists an open set U containing x and
not y (or vice versa). Then, there exists a basis element B C U, which is a set
separating x and y.

(3) Hence, any second countable Hausdorff topological space is countably
generated.

(4) Any separable metrizable space (which is therefore second countable and
Hausdorff) is countably generated.

Proposition A.1.7 (1) X is countably separated if and only if there exists
an injective measurable map X — [0, 1].

(2) X is countably generated if and only if X is measurably isomorphic to a
subset of [0, 1].

Proof. Let Q = {0, 1} with the product o-algebra, and define f : X — Q by
f(z)i = xa,(z) for i € N. Since each x4, : X — {0,1} is measurable and the
product o-algebra is the smallest making all coordinate projections measurable,
f is measurable.

Because {4;} separates points, for z # y there exists ¢ with x4, (z) # x4, (y),
hence f(x) # f(y). Thus f is injective.
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Let m; : Q — {0,1} be the i-th coordinate projection. Then ; *({1}) is
measurable in , and

FH L) = A
Intersecting with f(X) gives

f(A) = f(X) N L ({1,

so f(A;) is measurable in the subspace (f(X),B(£2)|¢(x)). This proves the
claim. 0

Definition A.1.8 (Standard measurable space) A measurable space is
called standard if it is isomorphic to a Borel subset of a complete separable
metric space.

Remark A.1.9 Standard measurable spaces are countably generated, by the
remarks above.

Theorem A.1.10 Any standard measurable space is either finite, isomorphic
to Z, or isomorphic to [0, 1].

Theorem A.1.11 If X is a standard measurable G-space, where G is a locally
compact second countable group, and the action G ~ X is smooth (i.e. X/G
is countably separated), then X/G is standard and there exists a measurable
section ¢ : X/G — X of the natural projection p: X — X/G.

Corollary A.1.12 If H < G is a closed subgroup of a locally compact second
countable group G, then there is a measurable section G/H — G of the natural
projection G — G /H.

A.2 DMeasures

Definition A.2.1 (Measure) A measure on a measurable space (X, %) is a
function p : # — [0, 0o] which is countably additive and such that u(0) = 0.

We call i a probability measure if u(X) = 1.

Sets with measure 0 (under p) are called (u-)null sets, and sets whose comple-
ment is null are called (u-)conull sets.

Definition A.2.2 A measure on X is called o-finite if there exists a countable
collection {A;}; of measurable sets with finite measure such that J, 4; = X.

Definition A.2.3 (Absolute continuity and equivalence of measures)
Let (X, %) be a measurable space, and let p, v be two measures on X.

(a) We say that p is absolutely continuous with respect to v (write p < v)
if every v-null set is also a p-null set.
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(b) The measures p and v are said to be equivalent (write p ~ v) if p < v
and v < u. Equivalently, if they have the same null sets. This is an
equivalence relation on the set of measures on (X, %). A class under this
equivalence relation is called a measure class.

Remark A.2.4 Every o-finite measure p is equivalent to a probability mea-
sure. Indeed, if {A;}7°, is a family of sets of finite measure whose union is X,
it is easily verified that

oo
i (BN A;)

v:B—v(B)= 27—
(B) ; 1(As;)

is a probability measure on X equivalent to u.

Definition A.2.5 (Borel measure) A Borel measure on a topological space
X is a measure on the Borel o-algebra of X.

Definition A.2.6 (Radon measure) A Radon measure on a topological
space X is a Borel measure p which is

(a) finite on compact sets,

(b) outer regular on Borel sets: for any Borel set B,

wu(B) =inf{u(U) : U D B,U open}, and

(c) inner regular on open sets: for any open set U,

w(U) =sup{u(K): K CU,K compact}.

We say that p is regular if, additionally it is inner regular on all Borel sets.

Radon measures are important because they correspond to positive linear
functionals on the space of continuous functions with compact support on
a locally compact Hausdorff topological space X. This makes it possible to
develop measure and integration from the point of view of functional analysis.
The following theorem makes this precise.

Theorem A.2.7 (Riesz-Markov-Kakutani Representation Theorem)
Let X be a locally compact Hausdorff topological space. If A is a positive real
linear functional on Co(X) (that is, A(f) >0 for all f € Co(X) with f>0),
then there exists a unique Radon measure u on X that represents A, that is,

A = [ Fan
for all f € Co(X).
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Obviously, the converse is true: every Radon measure on X gives rise to
a positive linear functional on C.(X) in this way. The theorem therefore
establishes a one-to-one correspondence between Radon measures and positive
linear functionals on C¢(X).

Remark A.2.8 Note that the theorem produces a Radon measure, which
by definition is only inner regular on open sets. Fortunately, under mild
conditions, the Radon measures arising from this representation are actually
inner regular on all Borel sets. For instance, any o-finite Radon measure on a
locally compact Hausdorff space is inner regular on all Borel sets.

We close this section with a useful fact about countably generated spaces with
o-finite measure.

Theorem A.2.9 ([Coh13]) Let (S, %, un) be a countably generated o-finite
measure space. Then, the space LP(S, A, u) is separable for all 1 < p < oo.

A.3 Measures and topological groups

In this section, G is a locally compact, Hausdorff topological group.

Definition A.3.1 (Haar measure) A (left) (resp. right) Haar measure on
G is a nonzero Radon measure p on G which satisfies u(gA) = p(A) (resp.
(Ag) = u(A)) for all g € G and all Borel sets A C G.

In virtue of the Riesz-Markov-Kakutani Representation Theorem, the Haar
measure is equivalent to a positive linear functional on C.(G). We hence use
the notation u(f) = [, fdu = [, f(z)du(z) according to what we want to
emphasize.

Theorem A.3.2 ([Foll6]) A left (resp. right) Haar measure on G exists and
s unique up to positive multiplicative constants.

Proposition A.3.3 Open sets have positive Haar measure.

Proof. Since m(G) > 0, by inner regularity, there exists a compact set K C G
with m(K) > 0. For any open set U C G, we have that K can be covered by
finitely many translates of U. Therefore, the measure of U cannot be 0. [

Proposition A.3.4 Countable sets in non-discrete topological groups have
Haar measure 0.

Proof. Let G be a non-discrete group, m its Haar measure, and A a countable
set. A is measurable, since it is the countable union of its points, and points in
a Hausdorff space are closed, hence measurable. Since m(A4) = > ., m({z}),
we only need to show that points (singletons) in G' have measure 0. Note that,
by G-invariance of the Haar measure, all singletons have the same measure.
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Recall that the Haar measure of any compact subset of G is finite. If we
manage to find an infinite compact subset K of G, we would have that
oo > m(K) > > coomtablec x M({2}) —where the sum is taken over any
countably infinite subset of K—, making m({z}) = 0.

Suppose no infinite compact subset exists. Since G is non-discrete, let g € G
be a point which is not isolated. Then, by local compactness, it has a compact
neighborhood V', which is finite by assumption, say V = {g, z1,...,2,}. Now,
since G is Hausdorff, we can find open neighborhoods W; of g that do not

contain x; for each ¢ = 1,...,n. Finally, the finite intersection of neighborhoods
n
vn (ﬂ Wz») = {9}
i=1
is a neighborhood of g, contradicting the fact that g was not isolated. O

Proposition A.3.5 Let G be compact. Then, any measurable automorphism
¢ : G — G preserves the Haar (probability) measure p.

Proof. The measure @, defined by ¢.u(A) = u(p~1(A)) is also a Haar
measure, hence it is a constant multiple of p. But ¢.u(G) = (e HG)) =

((G) =1, 50 pupr = pu. O
(A.3.6) The modular function. The group G acts on C.(G) on the left by

conjugation on the argument, that is:

(- f)(x) = flg " xg),

for g € G and f € C.(G). If u is a Haar measure on G, one can easily verify
that, given g € GG, the linear functional

fr=ulg-f)

is also a left Haar measure on G. Hence, there exists a positive constant Ag(g)
such that

(g - f) = Aclg)u(f).

We call
Ag:G—=Rsg, g~ Aglg)

the modular function of G. It is a continuous homomorphism from G to the
multiplicative group of positive real numbers.

Definition A.3.7 (Unimodular group) G is called unimodular if Ag = 1.

Examples A.3.8 (1) Any Abelian group is unimodular.

(2) Any compact group is unimodular, since there are no nontrivial compact
subgroups of (R, ).

43



A.3. Measures and topological groups

(3) Any discrete group is unimodular, since the Haar measure is the counting
measure.

(4) Any connected semisimple Lie group G is unimodular, since G = [G, G].
This in turn implies that G does not admit a nontrivial homomorphism to
(R>07 )

Unimodularity is important, among other things, because of the following
theorem.

Theorem A.3.9 (Weil formula, [Foll16]) Suppose G is a locally compact
Hausdorff group and H < G is a closed subgroup. There is a G-invariant
Radon measure p on G/H if and only if Ag|g = Apg. In this case, p is unique
up to a constant factor, and this factor can be chosen so that we have

[ rayaa= [ y ( / f(:cf)d5> du(H)
for f € C.(Q).

In particular, if G and H are unimodular, there is a unique (up to scaling)
G-invariant Radon measure on G/H.

The broader result —when we only assume that G is locally compact Hausdorff
and H is closed— is mentioned in example 1.1.6 (1) of this text. For an
ample treatment, see [Foll6, §2.6]. We summarize everything in the following
theorem.

Theorem A.3.10 Let G be a locally compact Hausdorff group and H < G be
a closed subgroup. Then, there exists a G-quasi-invariant Radon measure on
G/H and any two such measures are equivalent.

One instance in which the discussion about invariant measures is relevant is
the following.

Definition A.3.11 (Lattice subgroup) A subgroup I' < G is called a lat-
tice if it is discrete and there exists a finite G-invariant Radon measure on

G/T.

Remark A.3.12 Note that, by theorem A.3.9, the existence of a G-invariant
Radon measure on G/T" implies that Ag|r = Ar = 1, since I', being discrete,
is unimodular. However, more can be said about G:

Proposition A.3.13 If G admits a lattice I', then G is unimodular.

Proof. Since I is discrete and unimodular, we have Ag|r = 1, so I' C ker(Ag).
The modular function thus descends to a well-defined map A : G/I" — Ry
satisfying A(gx) = Ag(9)A(x) for ¢ € G and € G/T'. Pushing forward
the finite G-invariant measure on G/I' via A yields a finite Ag(G)-invariant
measure on Rs¢. This is impossible unless Ag(G) = {1}. O
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A.4 Technical remarks

As we stated earlier (remark A.2.8), any o-finite Radon measure is inner regular
on all Borel sets. This implies:

Corollary A.4.1 Let G be a second-countable locally compact Hausdorff group.
Then the Haar measure on G is regular.

(A.4.2) Polish spaces and regularity. By a Polish space, we mean a
separable completely metrizable space. In Polish spaces, we have the following
regularity result:

Proposition A.4.3 Any finite Borel measure on a Polish space is reqular.

In particular, since locally compact Hausdorff second countable spaces are Pol-
ish, any finite Borel measure on a locally compact Hausdorff second countable
space is regular.

Remark A.4.4 Recall that any o-finite measure is equivalent to a probability
measure (remark A.2.4). Therefore, any o-finite Borel measure on a Polish space
is equivalent to a Borel probability measure, which is regular by Proposition
A.4.3. This lets us state the following corollary.

Corollary A.4.5 Let G be a locally compact Hausdorff second countable group
and H < G be a closed subgroup. There exists G-quasi-invariant o-finite
measure on G/H, and any two such measures are equivalent. We summarize
this by saying that there exists a unique G-invariant measure class on G/H.

Proof. Existence follows from Theorem A.3.10. For uniqueness, any two G-
quasi-invariant measures y and v on G/H are equivalent to G-quasi-invariant
probability measures fi and 7 on G/H. Since G/H is locally compact, Hausdorff,
and second countable, these are regular by Proposition A.4.3. Therefore, again
by A.3.10, fi and ¥ are equivalent, and so are p and v. O

A.5 Unitary representations

Let H be a Hilbert space. The inner product on H is denoted by (£,n) and
is assumed to be linear in the first variable. We say that a linear operator
U :H — H is unitary if it is onto and preserves the inner product, that is,
(UE,Un) = (£,n) for all £,n € H. This, of course, implies boundedness of U.
The group of all unitary operators on H is denoted by U(H), which is always
endowed with the strong operator topology (namely, the topology of pointwise
convergence on ).

Definition A.5.1 (Unitary representation) A unitary representation of
a locally compact Hausdorff group G in a Hilbert space H is a homomorphism
7 : G — U(H) that is continuous (in the strong operator topology).

45



A.5. Unitary representations

Continuity in the strong operator topology means that the map
G—oH, g m(9)

is continuous for all £ € H. It is worth noting that strong continuity is implied
by the (apparently) weaker condition of weak continuity, that is, the condition
that the map

G—=C, g (n(g)n) (A.1)

is continuous for all £,n € H. This is because, on U(H), the strong operator
topology and the weak operator topology coincide. The map (A.1) deserves
its own name:

Definition A.5.2 (Matrix coefficient) Given 7 : G — U(H) a unitary
representation, and &,n € H, the map

G—=C, g (n(g)&mn)

is called a matrix coefficient of 7.
The notion of equivalence of unitary representations is defined as follows.

Definition A.5.3 (Unitary equivalence) Two unitary representations 7 :
G — U(H1) and m2 : G — U(H2) are said to be unitarily equivalent if there
exists an isometric surjective operator 1" : H; — Ha such that T (g) = m2(g)T
for all g € G. We write m; >~ m9.

Unitary representations are likely to be found when studying the action of a
group G on a space S, as the following Proposition shows.

Proposition A.5.4 ([BAIHVO08]) Let G be a locally compact, o-compact
group, and (S, 1) a o-finite G-space such that p is invariant and such that
L2(S, ) is separable. Then, the map

(r(9)f)(s) = f(g™"s), g€l seS,
defines a unitary representation 7 : G — U(L?(S, 1)) of G in L2(S, u) = L%(S).

Example A.5.5 If a locally compact Hausdorff second countable group G
acts on a standard measurable space S with G-invariant measure pu, then

(m(@)f)(s)=flg™'s), ge€G,s€S,

defines a unitary representation 7 : G — U(L?(.9)). This is because of Theorem
A.2.9 and Proposition A.5.4.
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A.6 Character theory

The theory described in this section is usually called character theory or
Pontryagin duality. For the most part, we list some results following [EW11,
§C.3]. A more ample (and accessible) treatment can be found in [Foll6, Ch.
4].

Character theory is a rather powerful theory generalizing Fourier analysis on
the circumference S! to locally compact Abelian (LCA) groups. Throughout
the section, G will denote a LCA group.

(A.6.1) Characters and the dual group. A character on G is a continuous
homomorphism

x:G—=St={zeC:|z|=1}"

We denote by G the set of characters on G. Note that G is an Abelian group
under pointwise multiplication of characters, namely

(x1 4+ x2)(9) = x1(9)x2(9),9 € G.

It is also usual to write (g, x) = x(¢g) to emphasize that it is a pairing between
G and G. We call G the dual group to G.

Theorem A.6.2 For any compact Abelian group G, the set of characters
forms a Hilbert basis for L*(G).

Proposition A.6.3 Let X = {£1}2>0 = [[{°{&1}. Then, the dual group X
consists of all functions of the form p;, ---p;,, where p; : X — {£1} C S!
is the projection on the i-th factor and iq,...,i, 1s a (possibly empty) finite
sequence of positive integers without repetitions.

Proof. Let x : X — S! be an arbitrary character. Since x is a homomorphism
and 22 = id for every x € X, we have that x(z)? = 1, that is, x(z) € {£1}.

On the other hand, since x is continuous, we claim that it can only depend
on a finite number of coordinates. That is, there exists N € Z~q such that if
xp = yi for all k < N, then x((zx)r) = x((yx)k)-

This claim follows from the fact that X is a compact metrizable space with
metric
0, ife=y
d(z,y) =
@) {(%)N(x’y) , otherwise,
where N(z,y) = min{k € Z~¢ : x; # yr}. Since X is compact, x is uniformly

continuous, so there exists a § > 0 such that if d(x,y) < d, then x(z) = x(y).
This assertion is equivalent to the claim.

'Since S* = U(C), a character is no more than a 1-dimensional unitary representation.
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From the previous fact, we deduce that y factors through the projection
7y : X — {£1}" on the first N coordinates:

X I N L e,

It is immediate to see that any such homomorphism f is the multiplication of
projections p;, - - - p;, for some sequence of distinct integers 1 < iq,...,4, < N.
This is what we wanted to prove. [l

A.7 Direct integrals

This is a summary of the exposition in [Zim84, §2.3] and [BAIHV08, §F.5].

(A.7.1) Fields of Hilbert spaces. Suppose (M, i) is a measure space and
that for each x € M we have a Hilbert space H, such that the assignment
x — H, is piecewise constant, namely, that there is a disjoint decomposition
of M into measurable sets,

o

M =| | M;,

i=1
such that for z,y € M;, H, = H,. We call this a field of Hilbert spaces over
M. By a section (or a vector field) of (Hy)zenr We mean an assignment

M >z f(x) € H,.

Since H,, is piecewise constant, the notion of measurability for f is easily defined,
namely, that it be a measurable function on each M; into the corresponding
Hilbert space?.

(A.7.2) Direct integral of a field. Let L2(M, u, (H.)zenr) be the set of
sections f such that [, | flI? di < oo, identifying two sections if they coincide

p-almost everywhere. The space of square-integrable sections is also denoted
by

@
H= / Hx = LZ(Mnu? (HI)IGM)v
M

and is called the direct integral of the field (Hy)zenr. It is also a Hilbert space
under the inner product

(fq) = /M<f<x>,g<x>> dp(z).

2Here, the Borel structure on H, is the one induced by the weak topology, which (for
any Hilbert space) coincides with the one induced by the norm topology (see [Edg79]). This
is not the case for general Banach spaces (see [Tal78]).
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Examples A.7.3 (1) Let M be a countable set and let ;1 be a measure on
M such that p({z}) # 0 for all z € M. Then every section is measurable and

®
/M Mo du(z) = €D Ha

zeM
is the direct sum of the Hilbert spaces H;, © € M.

(2) Let (M, p) be a o-finite measure space and let H, = C for all z € M. The
measurable sections are precisely the measurable complex-valued functions on
M. Then

D
/ Ho dule) = L2(M, ).
M

(A.7.4) Direct integral of a field of unitary representations. Suppose
now that (M, p) is o-finite and that for each x € M we have a unitary
representation m, : G — H, for a locally compact Hausdorff second countable
group G and separable Hilbert spaces H,. Similarly as before, we say that
x — m, is a measurable field of unitary representations if (x,g) — m,(g) is a
measurable function on each M; x G. We can then define a new representation

of GonH = ff‘;%xi
&)
. / T (7(9))(@) = (7a(9)) (f(2)),
M

called the direct integral of the field (7y)zens-

Examples A.7.5 If M is countable and p({z}) # 0 for all z € M, then 7 is
just the direct sum @, 5, 7 on @, cpr Ha-

A basic result on direct integrals of unitary representations is the following.

Proposition A.7.6 (Direct integral decomposition) Any unitary repre-
sentation w of a locally compact Hausdorff second countable group G on a
separable Hilbert space is unitarily equivalent to one the form f;‘; wy for some
standard measure space M with finite measure p, where all w, are irreducible.

This proposition is very useful because it allows to reduce many questions about
an arbitrary unitary representation to the case of an irreducible representation.
For instance:

Proposition A.7.7 Let 7 = ff; Tz

(1) Suppose all matriz coefficients of all w, vanish at co. Then all matriz
coefficients of m vanish at co.

(2) 7 has a non-trivial invariant vector if and only if for x in a set of positive
measure, 7, has a non-trivial invariant vector.
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A.8. Roots in semisimple Lie algebras

A.8 Roots in semisimple Lie algebras

This section is dedicated to describing briefly the theory of roots in semisimple
real Lie algebras, which is needed for the general proof of Moore’s theorem.
For a complete treatment, we recommend [Hel78].

Throughout, g will denote a real semisimple Lie algebra, and By its Killing
form.

Definition A.8.1 (Cartan involution) A Cartan involution is an automor-
phism © : g — g such that ©% = id; and the bilinear form

<X5Y>@:7B9(X7@Y)a X7Y€g
is positive definite.

Proposition A.8.2 Any real semisimple Lie algebra has a Cartan involution.

(A.8.3) Cartan decomposition. Let © be a Cartan involution, which will

be fixed from now on. Then, g decomposes as a direct sum of the eigenspaces
of ©:
g=top,

where t is eigenspace of © with eigenvalue 1 and p is eigenspace of © with
eigenvalue —1. Notice that £ is a subalgebra, while p is not. This decomposition
is called the Cartan decomposition associated to O.

Lemma A.8.4 If X €p, then ady(X) € End(g) is (-, -)o-self-adjoint.
Proof. Take Y, Z € g. Then,

<adg(X)Y7 Z>@ <[X7 Y]a Z>9 - _BG([Xv Y]’ @Z) = BE(Yv [X7@Z])
BG(Y7 _@[X7 Z]) = _Bg(ng[Xv Z]) = <Y7 [X7 Z]>@

= (Y, adg(X)Z)e. O

As a consequence of this lemma, if a C p is Abelian, then {adq(H) : H € a}
is a family of mutually commuting self-adjoint endomorphisms of g, hence
simultaneously orthogonally diagonalizable. This motivates the following
definition.

Definition A.8.5 (Roots) Let a C p be an Abelian subalgebra. Let o € a*.
Define
go ={X €g:adg(H)X = a(H)X for all H € a}.

If go # {0}, we call & a root of (g,a) and g, a root space.

We immediately have the following:

Proposition A.8.6 (1) [ga, 098] C ga+p for all o, B € a*.
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(2) ©(ga) = g—a for all a € a*, and Oy, : go — g—a is an isomorphism.

(A.8.7) Root space decomposition. Observe that a C go = Centrg(a). Let
¥ denote the set of nonzero roots of (g,a). Then, by the fact that {ady(H) :
H € a} is a family of mutually commuting self-adjoint endomorphisms of g,
we have a (-, -)g-orthogonal decomposition

0 =00% P -

aeX
It also follows from the finite dimensionality of g that ¥ is finite.

The case where a C p is maximal among all Abelian subalgebras of p is
particularly interesting, and we will assume it from now on. In this case, we
also have the following definition.

Definition A.8.8 (Maximal R-split torus) Let G be a Lie group with Lie
algebra g. For a fixed Cartan involution © and a C p a maximal Abelian
subalgebra, a maximal R-split torus of GG is the connected Lie subgroup A with
Lie algebra a.

A final remark on terminology:

Remark A.8.9 Since By is an inner product on a, we get for each o € X a
unique H, € a that represents it:

a=By(, Hy).

Theorem A.8.10 (X is a root system) Let a C p be a mazximal Abelian
subalgebra of p, and ¥ C a* \ {0} the set of nonzero roots of (g,a). Then, ¥ is
a root system, meaning that

(1) ¥ spans a*.
(2) For all a, 8 € X,
2Bgy(Hq, Hp)

a € X,
By(Ha, Ha)

8

(8) For all a, B € %,
QBg(HO“Hg)

7.
By(Ha, Hy) ©

An interesting fact about root spaces is that they give a way to construct
copies of sl(2,R) inside g. More particularly, recall that

5[(2,R):span{e+:<8 é),e_:((l] 8>h=<(1) _01>}

with commutation relations [ey,e_]| = h, [h,et] = £2ey. This construction is
a consequence of the following lemma.
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Lemma A.8.11 Let a € ¥ and X € g, \ {0}. Let zo be the unique positive
multiple of X such that

2

<xa,$a>@ == Bg(Ha,Ha).

Let yo = —O(zy), and hy, = %. Then,

[ZasYa] = Pay  [PasTa] = 2%a,  [ha, Ya] = —2Ya-

Corollary A.8.12 Let a« € ¥, X € go \ {0}, o, Yo, ha be as in the previous
lemma. Then, the linear map

sl(2,R) =g, err— o, € Yq, hhg,
18 an injective Lie algebra homomorphism with image

5[(2, R)X = Span{xm Yo, ha}'

We call (24, Yo, ha) a sl(2,R)-triple. Choose a triple for every a, {(za, Yo, ha) :
a € X}, such that x_, = y, for all . In this case, call g/, = Rzy < go. Then
we have the following proposition.

Proposition A.8.13 The space

¢ =00Po,

aeX

is a Lie subalgebra of g and it is semisimple. Moreover, if g = Lie(G) for some
semisimple Lie group G, then the connected Lie subgroup G’ corresponding to
g is closed in G.

Proof. (Sketch of proof) Lie subalgebra: From the construction, it is clear that
[a,a] =0, [a,90] € 05, (96, 95] € 9,45 (or 0), and [g;, 9" ,] € a. Therefore g’
is closed under brackets.

Semisimple: Let t/ be the solvable radical of g’. Then, v C a (if not, some
To €V, then hy = [24,ya] € ¥, and also —2y, € v/, yielding a copy of s[(2,R)
inside t'). Therefore, [¢/,g,] Ct' Ngl, =0 and [t/,a] =0, so v/ C Z(g'). Now,
for Zev and a € 3, 0= [Z,24] = a(Z)xq, so a(Z) =0 for all a € . Since
> spans a*, we have Z = 0.

Closedness of G’: any connected semisimple Lie subgroup of a semisimple
group is closed (see [oral5]). O

We end this section with a small proposition that is also useful in the general
proof of Moore’s theorem.

Proposition A.8.14 Given H € a\|J 5 ker o, there exists S C ¥ such that
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(1) S is a basis of a*.
(2) SCYH(H)={aeX:a(H) >0} (S consists of H-positive roots).
(8) For alla,B €S, a+p ¢ X.

Proof. We will construct S inductively, ensuring that S C X1 (H).

First, observe that there is a partial order on X7 (H) given by a = 3 if
a(H) > (H).

We begin by picking a; € X7 (H) maximal with respect to this order (that is,
with the highest possible value a1 (H)).

Now suppose we have constructed linearly independent elements o, ..., a, €
Y T(H), where each «; is maximal with respect to the order among all roots
outside the span of a1, ..., a;_1. Note that a; 4+ is not a root for any 7,5 < r,
since this would contradict the maximality of either o; or «;. If r = dima,
then we are done. Otherwise, we pick a1 € X1 (H) maximal with respect to
the order among all roots outside the span of ay, ..., .

At the end of this process, we have constructed the desired set S. O

A.9 An auxiliary result

This section is dedicated to a small auxiliary result used in Example 1.1.6 (4).

Proposition A.9.1 For each k € Z" \ {0}, the set
SL(n,Z)k = {~vk : v € SL(n,Z)}

18 infinite.
Proof. We begin by considering the special case k = de; = (d,0,...,0) for
d € Z\ {0}. The matrix
€ SL(n,Z)
which has a 2 x 2 block in the upper-left corner, the (n — 2) x (n — 2) identity
matrix in the bottom-right corner, and zeroes elsewhere, satisfies

"k = dy™e; = d(e1 +mez) =k + dmea, m € Zy,

all distinct elements of SL(n,Z)k.
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Now, suppose that k is not a multiple of e; = (1,0,...,0). Let

1 1 0 -0
01 1 -0
J=10 01 - 0] cSL(n,z)
Do 1
0 0 0 1

be a n X n upper triangular Jordan matrix with ones in the diagonal. We claim
that the points J™k € SL(n,Z)k, m € Z~g, are all distinct.

Indeed, if J™k = J'k for some m > ¢, then J"‘k = k, so k would be a
1-eigenvector of J™ ¢, The proof will conclude once we prove that the 1-
eigenspace of J” for any r € Z~ is exactly Req, yielding a contradiction with
the fact that & was assumed not to be a multiple of e;.

To calculate the 1-eigenspace of J", observe that J =1,, + N, where I, is the
n X n identity matrix and

010 0
00 1 0
N=|0 00 0
1
000 0

Observe that, in general, N7 shifts the ones to the j-th superdiagonal (so,
in particular, N® = 0). Then, since I,, and N commute, one can apply the
binomial theorem to obtain

o @) G (.

06 6 G

=t N =3 (;)NJ: 0 0 (5 (e
0 0 0 ©)

This forces any vector v = (vy,...,v,)" satisfying (J” — I,,)v = 0 to obey the
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following cascade of equations:

r r
rvg + (2>v3 + (3>v4 + -

(5o
ront (§)os oo

<

rus +

\V)

2

v, = 0,

which implies that v,, = -+ = v = 0, and so v € Re;.
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Appendix B

Observations

This last chapter is a collection of three observations I made while reading
Zimmer’s text. They are not particularly important, and emerged only because
at some points the assumptions are not stated explicitly. We explore them here,
studying whether the claims hold without the implicit, unstated assumptions,
for the sake of completeness.

Remark B.0.1 The author does not ezplicitly assume that the group G is
Hausdorff. Some authors, like Folland [Fol16], follow the convention of saying
“locally compact group” when they mean “locally compact Hausdorff group”,
the reason being the following: a locally compact group not being Hausdorff
is not a big restriction, since then G/{e} would be Hausdorff (and G and
G /@ are measurably isomorphic: since every open set in G is @—invariant,
the Borel o-algebra of G consists exactly of the inverse image of the Borel
o-algebra of G /@) We're anyway mostly interested in the case of Lie groups,
which are Hausdorff.

We always assume that G is Hausdorff for convenience reasons. For instance, the
Riesz-Markov-Kakutani Representation Theorem requires GG to be Hausdorff.

Remark B.0.2 Lemma 1.2.13, as stated in the main text, requires the as-
sumption that (Wy)ren forms a neighborhood basis at s. In Zimmer’s original
text [Zim84], it is not clear whether the assumption is this or that (Wy)xen is
a decreasing sequence of open sets with (),cy Wi = {s}. We assert that the
latter assumption is insufficient for the conclusion to hold.

To see why, consider G = R acting on S = C by addition. Let N = [—¢,¢] for
some € > 0, and let

W, =B <1;) U (B (i, ;) \{i}) :

the union of the disk of center 1 and radius 1/k and the punctured disk of
center i and radius 1/k. Then, W}, is a decreasing sequence of open sets with
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Mieny Wi = {1}. However, i € N + W, for all k € N, so i € ((en(V + Wy),
buti¢ R+1=R.

Remark B.0.3 In the statement of Proposition 2.1.3, the author does not
explicitly assume second-countability of G. This creates a small issue with
the fact that ergodicity is only defined for o-finite measures, and the Haar
measure of G might not be o-finite unless G is second countable (hence the
measure on G/H might not be o-finite, think of G discrete and uncountable,
and H = {e}).

Furthermore, in the proof, he uses Fubini’s theorem, which requires the mea-
sures to be o-finite. He also uses the existence of a measurable section of
G — G/H, which (in principle) requires G to be second countable.

Moreover, even if we extend the definition of ergodicity to include non-o-finite
measures, the claim doesn’t hold. Indeed:

Let Ry be the additive group of real numbers with the discrete topology, and
R* be the multiplicative group of non-zero real numbers. Let G = Rgq x R*,
H = {0} x R* ~R* < G, and S = R with its usual topology and the Lebesgue
measure. We have that G/H ~ Ry. Let

G S, (z,y)-s
therefore H ~ S, (0,y)-s
therefore G ~ S x G/H, (z,y)-(s,t

ys,
ys,
) = (ys,z +1).

The action of H on S is ergodic, since the orbit H -1 =R\ {0} is conull in S.

However, the action of G on S x G/H is not ergodic, since the set {0} x G/H
is invariant, but neither null nor conull in S x G/H ~ R x Ry.

Remark B.0.4 In the statement of Lemma 2.2.5, the author only assumes
explicitly that H is locally compact. This again creates a small issue with the
fact that ergodicity is only defined for o-finite measures, and the Haar measure
of H might not be o-finite unless H is second countable.

In the proof of “ergodic = dense”, he states that H/T is metrizable. This,
even though doesn’t affect the proof (the proof only really uses local compact-
ness), is not true in general unless H is locally compact and second countable
(in that case, H/T would be locally compact, Hausdorff and second countable,
hence Polish). Indeed, take I' = {e} and H an uncountable product of non-
trivial compact Hausdorff groups, such as H = [],.p{1,—1}. Then, H/T = H
is not metrizable.

In the proof of “dense == ergodic”, he identifies the dual of L*(H) with L>°(H)
and uses Fubini’s theorem on H x A, which requires the measure to be o-finite
(unless we observe some technicalities which here don’t work, see [Foll6, §2.3]).
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However, in this case, the claim is still true without second countability, and
the following argument works.

Suppose I' < H is dense in H, and suppose there exists A C H Borel, I'-
invariant but neither null not conull. Let m be a left Haar measure on H.

Define a Borel measure v on H by v(B) = m(AN B) for Borel B C H.
Claim 1. v is Radon.

Proof of claim. For every compact K C H, we have v(K) = m(ANK) <
m(K) < oo.

Fix a Borel set B. To prove outer regularity for B, let ¢ > 0 and choose an
open set U DO B with m(U) < m(B) + ¢ (by outer regularity of m). Then,
v(U)=v(B)+v(U\ B) <v(B)+m(U\ B) <v(B) +e¢.

Fix an open set U. To prove inner regularity for U, let ¢ > 0 and choose a
compact set K C U with m(K) > m(U) — e (by inner regularity of m on open
sets). Then, v(U) =v(K)+v(U\ K) <v(K)+m(U\ K) <v(K)+e. This
proves the claim.

Claim 2. v is I'-invariant.

Proof of claim. Let v € T and let B C H be Borel. Then

v(yB) = m(AN (vB))
[left-invariance of m] =m(y~ (AN ~B))
=m(y AN B)
[T-invariance of A] =m(AN B)
=v(B),

The claim is proven.
Claim 3. v is H-invariant.

Proof of claim. To prove H-invariance, we will show that v(g.p) = v(p) for
all ¢ € C.(H), viewing v as a positive linear functional on C.(H) and defining

(g+)(x) = (g~ 'x) for g € H, x € H.
Fix ¢ € C.(H) and define F': H — R by

F(g) = v(g«p) =/H<P(g‘1x) dv(z),

which we aim to prove to be constant on H.

By T-invariance of v, we have that F(y) = F(e) for all v € T'. If we show that
F' is continuous, then F' will be constant on H by density of I in H, hence the
claim will be proven.
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Fix go € H. Let K = suppy C H, which is compact. Let V be a compact
neighborhood of e € H. For g € goV, we have supp(g.p) = gK C goVK =: C.
Note that C' is compact, and in particular v(C) < oo.

The map
gOV x C — Ra (g,$) = So(g_lx)?

is continuous. By compactness of C, it follows that

1

g — sup|p(g'z) — gy )]

zeC
is continuous as a function goV' — R.

Therefore, since goV is a neighborhood of gy in H, there exists an open
neighborhood W C goV of go (W open in H) such that

sup [p(g™"x) — ¢(gp 'a)| < < for all g € W.

el max{1,v(C)}
Hence, for g € W,
IF(g) — Flgo)| = \ [ tota0) — olaa)) vt
< /C lo(972) — (g5 )| dv(a)
<v(C)- sup lola™y) — wlgg'y)]

v(C)

<e.

s
max{1,v(C)}

IN

This concludes the proof of the claim.

To conclude, we have that v is Radon and H-invariant. Observe that v(A) =
m(A) # 0 by the assumption that A is not null. Therefore, v is nonzero, hence
a left Haar measure for H. By uniqueness of Haar measures (Theorem A.3.2),
we have that v = ¢-m for some constant ¢ > 0. Since A is not conull, we have

that m(H \ A) > 0. But
0=m@)=m(ANn(H\A)=v(H\A) =c-m(H\A) >0,

which is a contradiction.
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