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Abstract

This document provides a largely self-contained exposition of Chapter 2
from Zimmer’s Ergodic Theory and Semisimple Groups [Zim84], which
introduces ergodicity, basic notions of group actions on measurable spaces,
and Moore’s ergodicity theorem. The main contribution is a detailed
reworking of the original proofs with explicit justifications for steps that
were not fully worked out, along with clarification of assumptions that
were implicit in the original text.

The appendix is divided into two parts: Part A contains the necessary
background material and surrounding mathematical context needed for
the main results, while Part B presents three observations that arose from
my examination of some assumptions that were not completely clear to
me in the original text. These observations, while not central to the main
theory, provide additional insight into the technical details.

The goal is to o!er an accessible and rigorous treatment that allows
readers to engage with this beautiful material without requiring extensive
background.
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Notation and conventions

I will use the following conventions.

N The set of natural numbers, not including 0.
R The one-point compactification of R, R → {↑}.

Sn The sphere {x ↓ R
n+1 : ↔x↔ = 1} of dimension n.

Tn The n-torus Rn
/Z

n.

Let G be a group.

Gx The stabilizer of x ↓ X under the action of G on X.
Gx The G-orbit of x ↓ X under the left action of G on X.
Z(G) The center of G.

Let R be a ring.

SL(n,R) The group of invertible matrices of determinant 1 in R.
SO(n,R) The group of orthogonal matrices of determinant 1 in R.

Let S be a measure space with measure µ, and 1 ↗ p < ↑.

Lp(S) The space of µ-a.e. equivalence classes of measurable functions
f : S ↘ C such that

∫
S
|f |p dµ < ↑.

L→(S) The space of µ-a.e. equivalence classes of measurable functions
f : S ↘ C that are bounded outside a set of measure 0.

ωA The characteristic function of the measurable set A ≃ S.
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Introduction

This text is concerned with actions of locally compact Hausdor! groups on
measure spaces. In this setting, the central property we will study is ergodicity,
whose definition will be our first focus.

In particular, we will first introduce some basic vocabulary and notions related
to ergodicity, and explore some of the properties of group actions. This will
constitute Chapter 1.

In Chapter 2, we restrict our attention to a particular class of actions (namely,
lattices in suitable groups acting on suitable spaces), and the main theorem
of the chapter (Moore’s ergodicity theorem) will answer the question of when
such actions are ergodic.

Throughout the rest of the introduction, we briefly present some of the examples
of group actions that will be interesting to us.

Let G be a locally compact Hausdor! topological group. By Haar’s theorem, G
carries a left-invariant Radon measure (a Haar measure), unique up to scaling.
A lattice in G is, roughly speaking, a discrete subgroup # ↗ G such that the
quotient space G/# supports a finite G-invariant measure.

Two basic examples are:

• # = Z
n ↗ R

n = G. The quotient G/# ⇐= R
n
/Z

n is the n-torus Tn, which
is compact, hence carries a finite invariant measure.

• # = SL(n,Z) ↗ G = SL(n,R). It is a classical theorem that SL(n,Z) is
a lattice in SL(n,R) (we will not prove this here).

A second basic theme is that transitive group actions are the same thing as
homogeneous spaces. Precisely, suppose G is ε-compact and acts continuously
and transitively on a Hausdor! space X. Fix x ↓ X and let Gx denote its
stabilizer. The orbit map G ↘ X, g ⇒↘ g ·x, descends to a continuous bijection
of G-spaces

G/Gx ⇑↘ X, gGx ⇒⇑↘ g · x,
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which, under the standing hypotheses, is a homeomorphism. Thus every tran-
sitive G-space is (canonically up to conjugacy of the stabilizer) a homogeneous
space G/H.

The following examples, with G = SL(n,R), are of particular interest.

• For n = 2, SL(2,R) acts on the complex upper half-plane by fractional
linear transformations:

H
2 = {z ↓ C : Im z > 0},

(
a b

c d

)
· z =

az + b

cz + d
.

This action is transitive, and identifies H
2 ⇓ SL(2,R)/SO(2,R), since

the stabilizer of i is SO(2,R).

• More generally, for n ⇔ 2, SL(n,R) acts transitively on the space of
positive-definite symmetric matrices:

P1(n) =
{
A ↓ Mn(R) : A

t = A, A > 0, detA = 1
}
, g ·A = gAg

t
.

This realizes P1(n) as the homogeneous space SL(n,R)/SO(n,R).

These actions induce actions on the boundaries of the spaces. For SL(2,R),
the action extends continuously to the boundary R = R → {↑} via the same
fractional linear formulas (with the usual conventions at ↑). The stabilizer of
↑ is the subgroup

P =

{(
a b

0 a
↑1

)
: a ↓ R>0, b ↓ R

}
≃ SL(2,R),

and the orbit map identifies the boundary as the homogeneous space

R ⇐= SL(2,R)/P.

For general n, SL(n,R) acts transitively on real projective space RPn↑1 by
projective linear transformations. The stabilizer of the line [e1] ↓ RPn↑1 is the
subgroup

SL(n,R)[e1] =

{(
a x

0 A

)
: a ↖= 0, x ↓ R

n↑1
, detA = a

↑1

}
≃ SL(n,R),

and hence
RPn↑1 ⇐= SL(n,R)/SL(n,R)[e1].

Moore’s ergodicity theorem will tell us that the action of any lattice # ↗
SL(n,R) (for instance, # = SL(n,Z)) on RPn↑1 is ergodic.
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Chapter 1

Ergodicity and smoothness

1.1 Introduction to ergodicity

Throughout this chapter, let G be a locally compact, Hausdor!, second count-
able topological group acting on a standard measurable space (S,B) (see
definition A.1.8 in the appendix) on the left. We assume that the action is
measurable, meaning that the action map G↙S ↘ S, (g, s) ⇒↘ gs is measurable.
In this case, we write G ⊋ S and call S a G-space.

Definition 1.1.1 Let µ be a ε-finite measure on S.

(a) µ is called quasi-invariant under the action of G (or G-quasi-invariant)
if, for all A ↓ B and g ↓ G, µ(g↑1

A) = 0 if and only if µ(A) = 0.

(b) µ is called invariant under the action of G (or G-invariant) if, for all
A ↓ B and g ↓ G, µ(g↑1

A) = µ(A).

Remark 1.1.2 The action G ⊋ S induces a G-action on the set of (ε-finite)
measures on (S,B), namely,

(g, µ) ⇒↘ g↓µ = µ(g↑1•).

An invariant measure on S is a fixed point of this action.

Recall that two measures are equivalent (see Definition A.2.3) if they have
the same null sets. It is immediately verified that the G-action on the set of
measures on S is well defined on measure classes, that is, G also acts on the
set of (ε-finite) measure classes on S via

(g, [µ]) ⇒↘ g↓[µ] = [g↓µ] = [µ(g↑1•)].

From this point of view, a measure µ is quasi-invariant if and only if its class
[µ] is a fixed point under the G-action.

Finally, it is also important to note that any ε-finite measure is equivalent to
a probability measure (see Remark A.2.4).
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1.1. Introduction to ergodicity

The main definition of the chapter is the following:

Definition 1.1.3 (Ergodicity) Let G and S be as above, and let µ be a
quasi-invariant measure under G. The action of G on (S, µ) is called ergodic if
every G-invariant measurable set is either null or conull. That is:

For any A ↓ B, gA = A for all g ↓ G implies µ(A) = 0 or µ(S \A) = 0.

Remark 1.1.4 An important fact to note is that if G ⊋ (S, µ) is ergodic,
then G ⊋ (S, ϑ) will also be ergodic for any ϑ ⇐ µ. Therefore, in this sense,
ergodicity is a question of measure classes.

(1.1.5) Essentially transitive and properly ergodic actions. We will
prove later (Corollary 1.2.15) that orbits of the action G ⊋ S are always
measurable. With this in mind, we say that an action G ⊋ (S, µ) is essentially
transitive if there exists a conull orbit, that is, an x ↓ S such that µ(S\Gx) = 0.

An essentially transitive action is ergodic: if A ↓ B is G-invariant, then either
x ↓ A, in which case Gx ≃ A and A is conull, or x /↓ A, in which case A and
Gx are disjoint, hence A is null.

An action is called properly ergodic if it is ergodic but not essentially transitive.
In this case, ergodicity implies that every orbit is a null set.

Examples 1.1.6 (1) IfH ↗ G is a closed subgroup, then there exists a unique
G-invariant measure class on G/H (see theorem A.3.10 in the appendix). The
action of G on G/H is transitive, hence ergodic.

(2) Suppose that S is a smooth manifold and that G acts on S by di!eomor-
phisms. If µ is a measure on S of the Lebesgue measure class (namely, locally
in the same class as the measure induced by the Lebesgue measure), then µ is
quasi-invariant, since di!eomorphisms preserve Lebesgue-null sets.

In particular, if G is a Lie group and H is a closed subgroup, the Lebesgue
measure class on G/H is G-invariant, thus the unique G-invariant measure
class of the previous example.

(3) (Irrational rotations of S1) Let S1 = {z ↓ C : |z| = 1} be the unit circle,
let ϖ ↓ R \ Q be an irrational number, and consider the map Rω : S1 ↘ S1,
z ⇒↘ ei2εωz. Then Rω generates an action Z ⊋ S1 by

(k, z) ⇒↘ Rk

ω(z) = ei2εkωz.

This action clearly preserves the arc length measure of S1. It is not essentially
transitive because all orbits are countable, hence null sets. However, it is
ergodic (thus properly ergodic). Indeed: let A ≃ S1 be invariant, and take
ωA(z) =

∑
n↔Z

anz
n to be the L2(S1)-Fourier expansion of its characteristic

function with respect to the Hilbert basis (zn)n↔Z. Invariance implies:
∑

n↔Z

anz
n = ωA(z) = ωA(e

i2εω
z) =

∑

n↔Z

ane
i2εnω

z
n
,
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1.1. Introduction to ergodicity

so the Fourier coe”cients coincide, an = anei2εnω for all n ↓ Z. Since ϖ /↓ Q,
an = 0 for n ↖= 0, which means that ωA is constant almost everywhere,
confirming ergodicity.

(4) Consider the usual action SL(n,Z) ⊋ R
n by linear maps for n ⇔ 2. Since

Z
n is invariant under this action, there is an induced action SL(n,Z) ⊋ Tn =

R
n
/Z

n:
(ϱ, x+ Z

n) ⇒↘ ϱx+ Z
n
,

and this action is by automorphisms of Tn. The action SL(n,Z) ⊋ R
n preserves

the Lebesgue measure because determinants of elements of SL(n,Z) are all 1.
Therefore, the induced action SL(n,Z) ⊋ Tn will preserve the Haar (Lebesgue)
measure—more generally, though, any automorphism ς of a compact group
K must be measure preserving (see Proposition A.3.5). We claim that it is
also ergodic (hence, again, properly ergodic, because orbits are countable and
countable sets in non-discrete groups are null, see Proposition A.3.4).

To show it, we see Tn as the product of n circles:

Tn = {(x1, . . . , xn) + Z
n : x1, . . . , xn ↓ R}

∝ {(ei2εx1 , . . . , ei2εxn) : x1, . . . , xn ↓ R} = S1 ↙ · · ·↙ S1,

and call ei2εx = (ei2εx1 , . . . , ei2εxn) for x = (x1, . . . , xn) ↓ R
n to abbreviate. In

this form, the action of SL(n,Z) is given by

(ϱ, ei2εx) ⇒↘ ei2εϑx.

Now, for A ≃ Tn an invariant measurable set under SL(n,Z), Fourier expand
its characteristic function ωA(ei2εx) =

∑
k↔Zn ake

i2εktx in L2(Tn), where k
t
x

denotes the scalar product. For ϱ ↓ SL(n,Z),

ωA(ϱ
↑1 · ei2εx) = ωA(e

i2εϑ→1
x) =

∑

k↔Zn

ake
i2εktϑ→1

x =
∑

k↔Zn

ake
i2ε((ϑt)→1

k)tx
,

so, changing the index of summation to j = (ϱt)↑1
k, we finally obtain

ωA(ϱ
↑1 · ei2εx) =

∑

j↔Zn

aϑtje
i2εjtx

.

Invariance of A yields that for all ϱ ↓ SL(n,Z),
∑

k↔Zn

ake
i2εktx = ωA(e

i2εx) = ωA(ϱ
↑1 · ei2εx) =

∑

k↔Zn

aϑtke
i2εktx

,

hence ak = aϑtk for all k ↓ Z
n and ϱ ↓ SL(n,Z). However, for all k ↖= 0,

the set SL(n,Z)k = {ϱk : ϱ ↓ SL(n,Z)} is infinite (see Proposition A.9.1).
Since

∑
ϖ↔SL(n,Z)k|ak|2 =

∑
ϖ↔SL(n,Z)k|aϖ|2 ↗

∑
k↔Zn |ak|2 < ↑, we obtain that

ak = 0. This implies that ωA is constant almost everywhere, concluding the
proof for ergodicity.
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1.2. Smoothness

(5) Let X = {±1}N. Then, X is a compact Abelian group, being the product
of finite Abelian groups. The Haar measure on X is simply the product of the
Haar measures on each factor. Let

H = {x = (xi)i↔N ↓ X : xi = 1 for all but finitely many i}.

Then, H is a countable, dense subgroup of X. Moreover, the action of H on
X by multiplication is ergodic (and, again, properly ergodic). To prove this
fact, we resort to character theory (see appendix A.6). By Theorem A.6.2
and Proposition A.6.3, a Hilbert basis for L2(X) is given by functions of the
form pi1 · · · pin , where pi : X ↘ {±1} ≃ S1 is the projection on the i-th factor
and i1, . . . , in is a (possibly empty) finite sequence of positive integers without
repetitions.

It is clear that for every i1, . . . , in non-empty, there exists h ↓ H such that
(pi1 · · · pin)(hx) = ⇑(pi1 · · · pin)(x) for all x ↓ X. Hence, if A ≃ X is H-
invariant and

ωA(x) = c+
∑

ci1,...,in(pi1 · · · pin)(x),

then ωA(hx) = ωA(x) a.e. for all h ↓ H. Uniqueness of Fourier coe”cients
implies ci1,...,in = ⇑ci1,...,in = 0 for every non-empty i1, . . . , in, so ωA is constant
almost everywhere, which proves ergodicity.

1.2 Smoothness

We first explore some properties of properly ergodic actions. The author
rightfully points out that proper ergodicity is a phenomenon of complicated
orbits. The first result is the following.

Proposition 1.2.1 Suppose that S is a second countable topological space,
that the action of G is continuous, and that µ is a quasi-invariant measure
which is positive on open sets. If the action is properly ergodic, then, for almost
every s ↓ S, Gs is a dense null set.

Proof. Begin by observing that for every W ≃ S open,
⋃

g↔G
gW is an open

invariant set, so, by ergodicity, it must be conull. Therefore, if {Wi}i is a
countable basis for the topology on S, the set

F =
⋂

i




⋃

g↔G

gWi





is conull, since its complement is the union of countably many null sets.
Furthermore, every point s ↓ F has a dense orbit, because said orbit intersects
every Wi. Indeed: fix s ↓ F and Wi. Then, s ↓

⋃
g↔G

gWi, so s ↓ g0Wi for

some g0. This implies that g↑1
0 s ↓ Wi. ↭

7



1.2. Smoothness

The following results will as well describe another sense in which proper ergodic
actions induce complicated orbits. We first need a definition.

Definition 1.2.2 (Smooth action) Let S be a countably separated measur-
able G-space (see Definition A.1.5). The action of G ⊋ S is called smooth if the
quotient measurable structure on the orbit space S/G is countably separated.

We observe that smoothness is a regularity property on the orbit space. The
following important proposition asserts that a proper ergodic action cannot be
smooth.

Proposition 1.2.3 Let G ⊋ (S, µ) be a smooth, ergodic action. Then there
exists a conull orbit.

Proof. First, take ϑ a probability measure on S equivalent to µ. It is also
ergodic for the G-action, as observed in Remark 1.1.4. We will find a ϑ-conull
orbit, which will also be µ-conull by equivalence.

Let S = {Ai}i be a sequence of measurable sets separating points in S/G. We
can assume that S is closed under taking complements —if not, just add to
S all the complements of the Ai’s. Let p : S ↘ S/G be the quotient map, and
ϑ̃ = p↓ϑ. Note that for every measurable A in S/G, p↑1(A) ≃ S is a union of
orbits, hence G-invariant. Therefore, ϑ̃(A) = ϑ(p↑1(A)) ↓ {0, 1} by ergodicity.

Let B =

{A ↓ S : ϑ̃(A) = 1}, which is non-empty because S is closed under

complements (hence there exists A ↓ S with full measure). B is a countable
intersection of sets of measure 1, thus ϑ̃(B) = 1. Now, it su”ces to show that
B consists of a single point, because, in that case, p↑1(B) would be a conull
orbit. If B contained two distinct points, x and y, there would exist some
A ↓ S that separates them. Then, either A or its complement would have
measure 1, implying that either x or y is not in B, a contradiction. ↭

Examples 1.2.4 As a quick consequence this proposition, we get that all the
properly ergodic actions discussed in 1.1.6 are not smooth, namely:

(1) The action Z ⊋ S1 by irrational rotations is not smooth.

(2) The action SL(n,Z) ⊋ Tn is not smooth.

(3) The action H ⊋ X = {±1}N is not smoth.

The proof for Proposition 1.2.3 also shows the following. It is a small general-
ization of of the fact that invariant measurable functions under ergodic actions
must be essentially constant.

Proposition 1.2.5 Let f : (S, µ) ↘ (Y,C ), where (S, µ) is an ergodic G-space
and (Y,C ) is a countably separated space. If f is measurable and G-invariant
(meaning f(gs) = f(s) for all g ↓ G, s ↓ S), then f is constant almost
everywhere, i.e., constant on a conull set.

8



1.2. Smoothness

Proof. We only need to show that there exists a point c ↓ Y such that f↑1(c)
is conull, or, equivalently,

f↓µ(Y \ {c}) = µ(f↑1(Y \ {c})) = µ(S \ f↑1(c)) = 0,

that is, that {c} is conull with respect to f↓µ. The proof of 1.2.3 with p = f

shows this. ↭

In many situations, one deals with continuous actions. In those cases, the
following proposition provieds a su”cient condition for smoothess.

Proposition 1.2.6 Suppose that G acts continuously on a second countable
Hausdor! topological space S. If every G-orbit is locally closed, then the action
is smooth.

Proof. Let p : S ↘ S/G be the quotient map. We first claim that is open.
Indeed: if U ≃ S is open, p↑1(p(U)) =

⋃
g↔G

gU is also open, hence p(U) is
open in S/G.

Since S is second countable and p is open, S/G is second countable as well.
Thus, to show that S/G with the Borel ε-algebra is countably separated, it
su”ces to see that any two points can be separated by open sets, because then
any countable basis for the topology on S/G —a countable family of Borel
sets— would separate points.

Take x, y ↓ S and suppose that p(x) and p(y) are not separated by an open set.
We will first show that Gy ≃ Gx. For this, choose gy ↓ Gy and a neighborhood
U of it. Then, p(U) is open in S/G and contains p(y) so it must also contain
p(x) by assumption. This means that there exists z ↓ U such that Gz = Gx,
so z ↓ Gx ′ U . Hence, gy ↓ Gx. Similarly, Gx ≃ Gy.

In particular, Gy is dense in Gx. Since Gx is locally closed, it is open in Gx,
so Gy ′Gx ↖= ∞, so p(y) = p(x). ↭

This has the following immediate consequence.

Corollary 1.2.7 If a compact group G acts continuously on a second countable
Hausdor! space S, then the action is smooth.

Proof. The hypotheses imply that orbits are compact. Compact sets in Haus-
dor! spaces are closed, hence locally closed. ↭

In the even more special case that S is a complete separable metrizable space,
smoothness is equivalent to several regularity conditions on the orbits, one of
them being that orbits are locally closed. The following theorem summarizes
the situation.

Theorem 1.2.8 Suppose that G acts continuously on a complete separable
metrizable space S. Then, the following are equivalent:

9



1.2. Smoothness

(i) The action is smooth.

(ii) All orbits are locally closed.

(iii) For each s ↓ S, the natural map G/Gs ↘ Gs is a homeomorphism, where
Gs ≃ S has the subspace topology.

The proof of this theorem relies on some lemmas, which we present and prove
now.

This first lemma yields the equivalence between (ii) and (iii) by taking S to be
the orbit closure.

Lemma 1.2.9 With the hypotheses above, suppose s ↓ S has a dense or-
bit. Then Gs is open if and only if the natural map ς : G/Gs ↘ Gs is a
homeomorphism.

Proof. “ ∈= ”: Suppose that G/Gs ↘ Gs is a homeomorphism. Then, Gs

is locally compact (because it is homeomorphic to a locally compact space)
and Hausdor! (because it is a subspace of a Hausdor! space), and therefore
satisfies the Baire category theorem. Moreover, since G is ε-compact, Gs

is too, meaning that there exists a compact subset A ≃ Gs with non-empty
interior. This is, there exists an open set U ≃ S such that A ∋ Gs ′ U . But
A is closed in S and Gs is dense, so we get the following:

Gs ∋ A ∋ Gs ′ U ∋ Gs ′ U = U.

Thus, Gs = GU , which is open in S.

“ =△ ”: Suppose now that Gs is open in S. We know that ς : G/Gs ↘ Gs is
continous and bijective, so it only remains to see that it is open.

The first reduction that we can make is that it su”ces to show openness for
the action map ς̃ : G ↘ Gs. Indeed: if ς̃ is open, take V an open set in G/Gs,
this means that q

↑1(V ) is open in G, where q : G ↘ G/Gs is the quotient
map. Now, ς(V ) = ς̃(q↑1(V )), which is open in Gs.

The second reduction is that it su”ces to check openness of ς̃ at the identity
e ↓ G. In fact, we only need to show that if U is a neighborhood of e, then
ς̃(U) is a neighborhood of s in S. This is because left multiplication in G is a
homeomorphism, for any open set V ≃ G and g ↓ V , V = gU for U an open
neighborhood of e. Then, ς̃(V ) = V s = (gU)s = g(Us) = gς̃(U), which is a
neighborhood of gs in S whenever ς̃(U) is a neighborhood of s, because G

acts on S continuously. We conclude that ς̃(V ) is a neighborhood of all of its
points, hence it is open.

The third and final reduction we can make is the following: it su”ces to show
that for any compact symmetric neighborhood U of e ↓ G, Us has non-empty
interior. Namely, if this is the case, let N be any neighborhood of e. Take

10



1.2. Smoothness

U a compact symmetric neighborhood of e with U
2 ≃ N . Then, if Us is a

neighborhood of us for u ↓ U , then u
↑1

Us will be a neighborhood of s, hence
so will be Ns.

To show that Us has non-empty interior, choose a countable dense set {gi}i ↓ G.
Then Gs =

⋃
i
giUs, a union of compact sets (which are closed since Gs is

Hausdor!). The Baire category theorem holds for open subsets of complete
metric spaces. In particular, it holds for Gs, so some giUs has non-empty
interior, hence so does Us. ↭
The statement (ii) =△ (i) is Proposition 1.2.6. Hence, it only remains to
establish the converse. So, suppose s ↓ S with Gs dense in S, but such that
Gs is not open. Following the same strategy as in the proof of the last Lemma,
1.2.9, we can further assume that Gs has empty interior. We aim to show that
S/G is not countably separated.

Since any subset of a countably separated space is itself countably separated,
it would su”ce to find a non-countably separated space inside S/G. For this,
we could just take an action—say, of a group H acting on a space X—which is
already known to be non-smooth, together with an injective measurable map
φ : X ↘ S that passes to the orbit spaces, and such that the induced map
X/H ↘ S/G is injective.

This strategy is promising because we have a natural candidate for such an
X, namely the action described in Example 1.1.6 (5). Here, X = {±1}N is
homeomorphic to the middle-thirds Cantor set. It is well known that the
classical construction of the Cantor set in [0, 1] generalizes easily, allowing for
the construction of many injective continuous maps from X into any complete
separable metric space.

However, instead of verifying full injectivity of the induced map X/H ↘ S/G,
we will establish a slightly weaker condition that is nonetheless su”cient for
our purposes, coming from the fact that H acts ergodically on X together with
Proposition 1.2.5.

Lemma 1.2.10 Let H be a group acting ergodically on (X,µ), where µ has
no atoms (meaning that singletons have measure 0). If I is a measurable space
and f : X ↘ I is an H-invariant measurable map which is countable-to-one,
then I is not countably separated.

Proof. If I is countably separated, Proposition 1.2.5 implies that f is constant
on a conull set. In particular, there exists a countable conull subset of X,
contradicting the fact that µ has no atoms. ↭
Hence, we only need to find an injective continuous map φ : X ↘ S such that

(a) φ(Hx) ≃ Gφ(x) for all x ↓ X, and

(b) φ(X) intersects each G-orbit in, at most, a countable set,

11



1.2. Smoothness

because then, the map X ↘ S/G would be H-invariant and countable-to-
one, proving that S/G is not countably separated. Of course, the rest of the
hypotheses of the lemma are satisfied: H here acts ergodically (see Example
1.1.6 (5)) and the measure on X, being the product of the normalized counting
measures on each factor, has no atoms.

(1.2.11) Cantor space construction on S. For x = (xi) ↓ X, write
pn(x) = (x1, . . . , xn). Suppose that for each x ↓ X and n ↓ N, there is a
non-empty open set U(x, n) ≃ S such that

(1) U(x, n+ 1) ≃ U(x, n),

(2) diam(U(x, n)) ↗ 1/n,

(3) if pn(x) = pn(y), then U(x, n) = U(y, n), and

(4) if pn(x) ↖= pn(y), then U(x, n) ′ U(y, n) = ∞.

Then, for each x there exists a unique point in


n↔N
U(x, n), which we call

φ(x). Indeed, existence is a consequence of the completeness of S: any sequence
(sn)n with sn ↓ U(x, n) is Cauchy by (2), therefore has a limit, which is in

n↔N
U(x, n) by (1). Uniqueness comes from the fact that any two points

in


n↔N
U(x, n) must be arbitrarily close to each other by (2), hence equal.

From (4), φ is injective. Finally, it is continuous: if the distance from y to x is
small enough (namely, pn(y) = pn(x) for some n ↓ N), then from (2) and (3)
it follows that the distance from φ(y) to φ(x) is smaller than 1/n.

Of course, there are many possible choices for U(x, n), but we aim to select them
in such a way that conditions (a) and (b) are satisfied. Let hn = ((hn)i)→i=1 ↓ X

be given by

(hn)i =


1, if i ↖= n

⇑1, if i = n,

and suppose additionally that we can choose U(x, n) so that

(5) For each x ↓ X, n ↓ N there exists g(x, n) ↓ G such that for all k ↗ n,

U(xhk, n) = g(x, k)U(x, n),

and

(6) There exists a neighborhood N of e ↓ G such that for all x, y ↓ X with
pn(x) ↖= pn(y),

(N · U(x, n)) ′ U(y, n) = ∞.

Then:

Lemma 1.2.12 Condition (5) implies (a), and condition (6) implies (b).

12
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Proof. H is generated by the hn’s. Therefore, (5) =△ (a) follows from the fact
that φ(xhn) = g(x, n)φ(x), which is obtained by passing condition (5) to the
intersection.

Now, if condition (6) holds, it is clear that for every x ↓ X,

Nφ(x) ′ φ(X) = {φ(x)},

since for any y ↖= x, there exists n ↓ N such that pn(y) ↖= pn(x), and this implies
that (N · U(x, n))′U(y, n) = ∞, but Nφ(x) ≃ N ·U(x, n), and φ(y) ↓ U(y, n),
so φ(y) /↓ Nφ(x).

Let M be a symmetric neighborhood of e ↓ G such that M
2 ≃ N , and let

{gi}i be a countable dense subset of G. We have that
⋃

i
Mgi = G, since, for

any g ↓ G, there exists gk ↓ Mg, or, equivalently, g ↓ Mgk. Because of this
fact, Gφ(x) =

⋃
i
Mgiφ(x), so we only need to see that Mgiφ(x) ′ φ(X) has at

most one point for each i.

If φ(y) = m1giφ(x) and φ(z) = m2giφ(x) for m1,m2 ↓ M , we have that
φ(y) = m1m

↑1
2 φ(z) ↓ Nφ(z) ′ φ(X), hence φ(y) = φ(z). ↭

We now proceed to show that we can choose U(x, n) such that (1)-(6) hold.
We begin with the following little remark:

Lemma 1.2.13 Let N be a compact symmetric neighborhood of e ↓ G. Then,
for any s ↓ S and any decreasing countable neighborhood basis (Wi)i↔N of s,

⋂

i

NWi ≃ Gs.

Proof. Let t ↓


i
NWi, namely, t = limk tk with tk ↓


i
NWi. Write tk =

gksk, with gk ↓ N and sk ↓ Wk. Since the Wk’s are a decreasing neighborhood
basis of s, we have that sk ↘ s. On the other hand, by passing to a subsequence,
we can assume that gk ↘ g ↓ N . Then, t = gs. ↭

We now proceed to construct the desired U(x, n), g(x, n) inductively. Fix a
compact symmetric neighborhood N of e ↓ G. Let I ↓ X denote the identity,
that is, Ii = 1 for all i. Suppose that we have already chosen U(x, k) and
g(x, k) for all x ↓ X and k ↗ n, so that (1)-(6) hold, and with the following
additional assumptions:

(7) s ↓ U(I, k),

(8) as a function of x, g(x, k) depends only on pk(x),

(9) g(xhk, k) = g(x, k)↑1, and

(10) for k ↗ n, let Tk : S ↘ S be defined by

Tk|U(x,k) = g(x, k), Tk|S\⋃x,k U(x,k) = identity.

13



1.2. Smoothness

Then, the g(x, k) are chosen so that Hn, the group of transformation of S
generated by {Tk : k ↗ n}, is finite Abelian, and acts simply transitively
on the set {U(x, n) : x ↓ X} (which is of cardinality 2n).

For n = 0, we take U(x, 0) = S, g(x, 0) = e for all x.

Now, let (Wi)i be a decreasing countable basis of neighborhoods of s (as in
Lemma 1.2.13). Let G0 ≃ G be the set of 2n-fold products of elements of the
form g(x, k), k ↗ n, which is finite. Observe that, as a consequence of (10), for
every T ↓ Hn and any x ↓ X, there exists some g ↓ G0 such that T |U(x,n) = g.

Then, by finiteness of G0, M =
⋃

g↔G0
gNg

↑1 is a compact symmetric neigh-
borhood of e, so, by Lemma 1.2.13 and the fact that Gs has empty interior,

i
MWi is nowhere dense. Thus, as a consequence of the Baire Category

Theorem, there exists some fixed i such that MWi is not dense in U(I, n).
Since Gs is dense, we can pick g(I, n+ 1) ↓ G such that

g(I, n+ 1)s ≃ U(I, n) \MWi.

We can hence choose an open set U(I, n+ 1) satisfying the following:

• s ↓ U(I, n+ 1) ≃ U(I, n+ 1) ≃ U(I, n).

• U(I, n+ 1) ≃ Wi

• g(I, n+ 1)U(I, n+ 1) ≃ U(I, n) \MWi.

• diam(gU(I, n+1)) ↗ 1/(n+1) for all g ↓ G0 →G0g(I, n+1) —the latter
being a finite set.

The remaining choices are clear: given x, pick the unique T ↓ Hn such that
U(x, n) = T (U(I, n)) and choose g0 ↓ G0 such that T |U(I,n) = g0. Define

U(x, n+ 1) =


g0U(I, n+ 1), if xn+1 = 1,

g0g(I, n+ 1)U(I, n+ 1), if xn+1 = ⇑1,

and

g(x, n+ 1) =


g0g(I, n+ 1)g↑1

0 , if xn+1 = 1,

g0g(I, n+ 1)↑1
g
↑1
0 , if xn+1 = ⇑1.

It is now clear by construction that the conditions (1)-(10) are satisfied up to
n+ 1. This finally gives us the existence of an injective continuous mapping
φ : X ↘ S such that (a) and (b) are satisfied, hence a map f satisfying the
conditions of Lemma 1.2.10.

We now sum up the proof of (i).

Proof. (Proof of Theorem 1.2.8) “(ii) ∈△ (iii)”: Given s ↓ S, take S
↗ = Gs

(G ⊋ S
↗ because the action of G on S is continuous). Applying Lemma 1.2.9

directly to the action G ⊋ S
↗ yields the result.

14



1.2. Smoothness

“(ii) =△ (i)”: This is Proposition 1.2.6.

“(i) =△ (ii)”: Suppose that Gs, for s ↓ S, is not locally closed. Then, again
taking S

↗ = Gs, we have that Gs is not open in S
↗. By the previous Cantor

space construction and Lemma 1.2.10, S↗
/G is not countably separated. Since

subsets of countably separated spaces are countably separated (and the ε-
algebra on S

↗
/G is the subset ε-algebra with respect to S/G), we have that

S/G is not countably separated, i.e., the action is not smooth. ↭

The end of this section is devoted to the following remarkable theorem and
some of its consequences.

Theorem 1.2.14 Let S be a countably separated measurable G-space. Then,
there is a compact metric space X on which G acts continuously and an injective
measurable G-equivariant map S ↘ X.

Corollary 1.2.15 Let S be a countably separated measurable G-space. Then,
orbits are measurable sets and stabilizers of points are closed subgroups.

Proof. Since G is locally compact, Hausdor!, and second countable, it is ε-
compact. In any continuous G-space, orbits are measurable sets when G is
ε-compact.

By Theorem 1.2.14, there exists a compact metric space X with a continuous
G-action and an injective measurable G-equivariant map ς : S ↘ X. Since X

is a continuous G-space, all orbits in X are measurable.

For any s ↓ S, we have ς(Gs) = Gς(s) by G-equivariance of ς. Since Gς(s) is
measurable inX and ς is measurable, the orbit Gs = ς

↑1(Gς(s)) is measurable
in S.

For stabilizers: since ς is injective and G-equivariant, Gs = Gϱ(s) for any
s ↓ S. In the continuous action on X, stabilizers are closed subgroups, hence
Gs is closed in G. ↭

Corollary 1.2.16 Any action of a compact group on a countably separated
measurable space is smooth.

Proof. By Theorem 1.2.14, there exists a compact metric space X with a
continuous G-action and an injective measurable G-equivariant map ς : S ↘ X.

Since X is a compact metric space, it is second countable and Hausdor!. By
Corollary 1.2.7, the action of the compact group G on X is smooth.

The G-equivariant map ς : S ↘ X induces a well-defined map ς̄ : S/G ↘ X/G

on the orbit spaces. Since ς is injective, ς̄ is also injective. Moreover, ς̄ is
measurable because ς is measurable and the quotient measurable structures
are induced by the respective quotient maps.
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Since X/G is countably separated (by smoothness of the action) and ς̄ is an
injective measurable map, S/G is also countably separated. Hence the action
on S is smooth. ↭

This corollary shows that there is no “proper ergodic theory” for actions of
compact groups.

Proof. (Proof of Theorem 1.2.14) Let {Ai}i↔N be a sequence of measurable
sets in S separating points, and let ωi denote the characteristic function of Ai.

Let B denote the unit ball in L→(G), equipped with the weak-* topology,
viewing L→(G) as the dual of L1(G) (this is possible because the Haar measure
of G is ε-finite, since G is second countable). Then, by the Banach-Alaoglu
theorem, B is compact. Additionally, L1(G) is separable because G is. There-
fore, since B is the closed unit ball of the dual of a separable Banach space, it
is metrizable with the weak-* topology. Thus B is a compact metric space.

The group G acts on L→(G) by left translations: (g · f)(h) = (Lgf)(h) =
f(g↑1

h) for f ↓ L→(G), g, h ↓ G. This action preserves the unit ball B and is
continuous with respect to the weak-* topology. To see the continuity, note
that left translation Lg on L→(G) is the adjoint of right translation Rg→1 on
L1(G): for f ↓ L→(G) and ς ↓ L1(G),

▽Lgf,ς̸ =


G

f(g↑1
h)ς(h) dµ(h) =



G

f(k)ς(gk) dµ(k) = ▽f,Rg→1ς̸,

where the second equality uses the substitution k = g
↑1

h and left-invariance of
Haar measure. Since Rg→1 is continuous on L1(G) (because it is an isometry),
its adjoint Lg is weak-* continuous on L→(G). Thus B is a compact metric
G-space.

Let X =


→

i=1B, equipped with the product topology. Since each B is compact
and metric, X is compact and metrizable. The diagonal G-action on X given
by (g · (fi)→i=1) = (g · fi)→i=1 is continuous, making X a compact metric G-space.

Define ς : S ↘ X by ς(s) = (ςi(s))→i=1, where each ςi(s) ↓ B is given by

[ςi(s)](g) = ωi(g
↑1

s), g ↓ G.

First, we verify that ς is G-equivariant. For any g, h ↓ G and s ↓ S:

[ςi(hs)](g) = ωi(g
↑1(hs)) = ωi(g

↑1
hs),

while

[(Lhςi(s))](g) = [ςi(s)](h
↑1

g) = ωi((h
↑1

g)↑1
s) = ωi(g

↑1
hs).

Thus ςi(hs) = Lhςi(s) for all i, which means ς(hs) = h · ς(s).
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Next, we show that ς is measurable. Since X has the product topology, it
su”ces to show that each coordinate map ςi : S ↘ B is measurable. For this,
it su”ces to show that for any f ↓ L1(G), the map

s ⇒↘ ▽ςi(s), f̸ =


G

f(g)[ςi(s)](g) dµ(g) =



G

f(g)ωi(g
↑1

s) dµ(g)

is measurable. Since (s, g) ⇒↘ f(g)ωi(g↑1
s) is measurable on S ↙G, it follows

from Fubini’s theorem that s ⇒↘
∫
G
f(g)ωi(g↑1

s) dµ(g) is measurable.

Finally, we show that ς is injective. Suppose s, t ↓ S and ς(s) = ς(t). Then
ςi(s) = ςi(t) for all i, which means

[ςi(s)](g) = [ςi(t)](g) for almost all g ↓ G

for each i. That is, ωi(g↑1
s) = ωi(g↑1

t) for almost all g ↓ G, for each i.

Since there are only countably many sets Ai, the intersection

→⋂

i=1

{g ↓ G : ωi(g
↑1

s) = ωi(g
↑1

t)}

has full measure in G. Therefore, there exists some g0 ↓ G such that ωi(g
↑1
0 s) =

ωi(g
↑1
0 t) for all i. This means that g↑1

0 s ↓ Ai if and only if g↑1
0 t ↓ Ai for all i.

Since the sequence {Ai}i separates points in S, we conclude that g↑1
0 s = g

↑1
0 t,

and therefore s = t. ↭
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Chapter 2

Moore’s ergodicity theorem

2.1 The question

We have seen some examples of ergodicity above. The central question of this
text is whether or not certain naturally defined actions are ergodic, and this
question will constitute the bulk of this chapter. For instance, we want to prove
ergodicity of the boundary action of SL(2,Z) on R given by fractional linear
transformations, as described in the introduction, and more generally, actions
of lattices in semisimple Lie groups. As remarked in the introduction, R can
be identified with SL(2,R)/P , where P is the subgroup of upper triangular
matrices. Hence, ergodicity of the action of SL(2,Z) on R is a special case of
the following question:

Question 2.1.1 Let G be a semisimple Lie group, and H1, H2 ↗ G closed
subgroups. When is H1 ergodic on G/H2?

This itself is a special case of the following.

Question 2.1.2 Let G be a semisimple Lie group, and S an ergodic G-space.
If H ↗ G is a closed subgroup, when is H ergodic on S?

When S is a topological space and the action G ⊋ S is continuous and
transitive, this is equivalent to Question 2.1.1. Indeed, since G is ε-compact,
the orbit map G/Gs ↘ S is a homeomorphism (see [Fol16]).

The following proposition is very useful.

Proposition 2.1.3 Let G be a locally compact Hausdor! second countable
group, S a G-space with quasi-invariant measure µ, and H ↗ G a closed
subgroup. Then, H is ergodic on S if and only if G is ergodic on S ↙G/H.

Here, G acts on S ↙G/H diagonally: g · (s, x) = (gs, gx). The measure class
on S ↙G/H is the product measure class.

18
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Proof. “ =△ ”: Suppose H is ergodic on S. We prove that G is ergodic on
S ↙G/H by contrapositive.

Assume G is not ergodic on S ↙ G/H. Then there exists a G-invariant
measurable set A ≃ S ↙G/H that is neither null nor conull.

For each x ↓ G/H, define the x-section Ax = {s ↓ S : (s, x) ↓ A}. We claim
that G-invariance of A implies gAx = Agx for all g ↓ G and x ↓ G/H.

Indeed, s ↓ gAx if and only if g↑1
s ↓ Ax, which holds if and only if (g↑1

s, x) ↓
A. Since A is G-invariant, this is equivalent to g · (g↑1

s, x) = (s, gx) ↓ A,
which means s ↓ Agx. Thus gAx = Agx.

Since G acts transitively on G/H , we can write G/H = {g · eH : g ↓ G} where
eH denotes the identity coset. By the relation above, for any x = g · eH, we
have Ax = Ag·eH = gAeH .

Now, if AeH were null, then every section Ax = gAeH would be null (since the
action preserves the measure class), and by Fubini’s theorem, A would be null,
contradicting our assumption. Similarly, if AeH were conull, then every Ax

would be conull, making A conull by Fubini’s theorem.

Therefore, AeH is neither null nor conull. But AeH = hAeH for all h ↓ H, so
AeH is H-invariant. This contradicts the ergodicity of H on S.

“ ∈= ”: Suppose G is ergodic on S ↙G/H. We prove that H is ergodic on S

again by contrapositive.

Assume H is not ergodic on S. Then there exists an H-invariant measurable
set B ≃ S that is neither null nor conull.

By the existence of measurable sections (see A.1.12), we can choose a measur-
able section ς : G/H ↘ G of the natural projection p : G ↘ G/H, so that
p(ς(x)) = x for all x ↓ G/H.

Define A = {(s, x) ↓ S ↙G/H : s ↓ ς(x)B}. We claim that A is G-invariant.

Indeed, let (s, x) ↓ A, so s ↓ ς(x)B. For any g ↓ G, we have ς(gx) = gς(x)h
for some h ↓ H. Since B is H-invariant, we have ς(gx)B = gς(x)hB =
gς(x)B. Therefore, gs ↓ ς(gx)B if and only if gs ↓ gς(x)B, if and only if
s ↓ ς(x)B, which shows (gs, gx) ↓ A if and only if (s, x) ↓ A. Thus A is
G-invariant.

Finally, since B is neither null nor conull, then by Fubini’s theorem, A is also
neither null nor conull, contradicting the ergodicity of G on S ↙G/H. ↭
Corollary 2.1.4 If H1, H2 ↗ G are closed subgroups of a locally compact
Hausdor! second countable group, then H1 is ergodic on G/H2 if and only if
H2 is ergodic on G/H1.

Proof. By the above proposition, both statements are equivalent to G being
ergodic on G/H1 ↙G/H2. ↭
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2.2. Irreducible lattices

Moore’s ergodicity theorem completely answers Question 2.1.1 for G a simple
Lie group and H1 or H2 a lattice in G. It is formulated in a little more
generality, so that it also provides a complete answer when G is a suitable
semisimple Lie group and # is an irreducible lattice.

2.2 Irreducible lattices

Definition 2.2.1 (Irreducible lattice) Let G be a semisimple Lie group
with finite center and # ↗ G a lattice. We say that # is irreducible if for
every non-central normal closed subgroup (equivalently1, every closed normal
subgroup of positive dimension) N , # is dense when projected onto G/N .

This definition excludes examples such as #1↙#2 ↗ G1↙G2, where the lattice
decomposes as a product corresponding to a factorization of the ambient group.
There are other characterizations of irreducibility for lattices, which show that
a lattice is irreducible, roughly speaking, precisely when it does not come from
such product constructions.

A typical example of an irreducible lattice is the following.

Examples 2.2.2 Let G = SL(2,R)↙SL(2,R) and O = Z[
√
2]. Then, SL(2,O)

is an irreducible lattice in G, viewed as a subgroup of G via the map g ⇒↘
(g,ε(g)), where ε is the Galois map sending coe”cients a+ b

√
2 to a⇑ b

√
2.

For a discussion of this example, see [Zim84, §6.1].

We actually need a more general version of irreducibility, which we preface
with a definition.

Definition 2.2.3 (Irreducible action) Let G = G1 ↙ · · ·↙Gn be a direct
product, where Gi is a connected simple non-compact Lie group with finite
center. Let S be an ergodic G-space with finite invariant measure. We say
that the action of G on S is irreducible if for every non-central normal closed
subgroup N ↗ G, N is ergodic on S.

For instance, if G is simple, irreducibility is simply ergodicity.

Proposition 2.2.4 Let G be as in Definition 2.2.3 and # ↗ G a lattice. Then,
# is an irreducible lattice if and only if the action of G on G/# is irreducible.

Proof. If N ↗ G is closed and normal, then N is ergodic on G/# if and only if
# is ergodic on G/N (Corollary 2.1.4). This, in turn, is equivalent to # being
dense when projected onto G/N by the following lemma. ↭

Lemma 2.2.5 If # ↗ H is a subgroup of a locally compact Hausdor! (second
countable) group H, then # is ergodic on H acting by left multiplication if and
only if # is dense in H.

1
Indeed, every discrete normal subgroup is central; conversely, the center of G is discrete.
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Proof. “ =△ ”: If # ↖= H , then #\H is a non-trivial locally compact Hausdor!
second countable group on which # acts trivially. Pick disjoint open sets
U, V in #\H . Their preimages ↼↑1(U),↼↑1(V ) under the canonical projection
↼ : H ↘ #\H are disjoint open sets in H, hence of positive Haar measure,
thus neither null nor conull, and #-invariant, contradicting ergodicity.

“ ∈= ”: See Remark B.0.4. ↭

2.3 Moore’s theorem: statement and consequences

We are ready to state some versions of Moore’s theorem and extract some
consequences.

Theorem 2.3.1 (Moore’s ergodicity theorem) Let G = G1↙ · · ·↙Gn be
a direct product of connected simple non-compact Lie groups with finite center,
and # ↗ G an irreducible lattice. If H ↗ G is a closed subgroup and H is not
compact, then H is ergodic on G/#.

The proof of this theorem will constitute the final sections of this chapter. The
converse assertion, namely, that if H is compact then H is not ergodic on G/#,
is also true:

Corollary 2.3.2 With H,#, G as in Theorem 2.3.1, # is ergodic on G/H if
and only if H is not compact.

Proof. # being ergodic on G/H is equivalent to H being ergodic on G/# by
Corollary 2.1.4. Then, one direction is Theorem 2.3.1. For the other direction,
suppose H is compact. Then, ergodicity of H on G/# implies that some
H-orbit is conull by 1.2.3 and 1.2.7. This is impossible since the H-orbits are
closed submanifolds of strictly smaller dimension, hence null. ↭

Examples 2.3.3 (1) If # ↗ SL(2,R) is a lattice, then # is ergodic on R ⇓
SL(2,R)/P , since P is not compact.

(2) More generally, any lattice in SL(n,R) —like SL(n,Z)— is ergodic on
RP

n↑1.

(3) SL(n,Z) is ergodic on R
n by the natural action. Indeed, this is equivalent

to SL(n,Z) being ergodic on R
n \ {0}. The latter is a homogeneous space of

SL(n,R), and for a non-zero vector v ↓ R
n its stabilizer is the subgroup

StabSL(n,R)(v) =

{(
1 ∀
0 A

)
: A ↓ SL(n⇑ 1,R)

}
,

which is non-compact: for n ⇔ 3 it already contains the non-compact group
SL(n ⇑ 1,R), while for n = 2 it contains the unipotent subgroup

{
1 x
0 1


:

x ↓ R
}
⇓ (R,+). Hence the hypotheses of Moore’s theorem are met in every

dimension n ⇔ 2, and the desired ergodicity follows.

21



2.4. Translation into a statement about unitary representations

(4) Let H
n be real hyperbolic n-space, realized as the unit ball endowed

with the Poincaré metric, and put G = Isom+(Hn) ⇓ SO+(n, 1), which is
a connected simple non-compact Lie group with finite center. Let # ↗ G

be a lattice (so that, if # is torsion-free, Hn
/# is a finite-volume hyperbolic

manifold with fundamental group #). Then, every g ↓ G extends to a conformal
di!eomorphism of the boundary sphere Sn↑1 (for these facts about hyperbolic
geometry, see [BP92]). Fixing a boundary point ↽, we obtain an identification
Sn↑1 ⇓ G/P with P = StabG(↽). In the upper–half–space model one may take
↽ = ↑; then P contains all horizontal translations (x, t) ⇒↘ (x+ b, t), b ↓ R

n↑1

(and vertical dilations), so P is non-compact. Moore’s theorem applies, and #
acts ergodically on Sn↑1.

We will actually prove a more general version of Moore’s theorem, which is
stated in terms of irreducible actions instead of lattices.

Theorem 2.3.4 (Moore’s ergodicity theorem) Let G = G1↙ · · ·↙Gn be
a direct product of connected simple non-compact Lie groups with finite center,
and S an irreducible G-space with finite invariant measure. If H ↗ G is a
closed subgroup and H is not compact, then H is ergodic on S.

This implies Theorem 2.3.1 putting S = G/#.

2.4 Translation into a statement about unitary rep-

resentations

Moore’s theorem follows from a general fact about unitary representations of
simple Lie groups. This section is devoted to describe this connection.

(2.4.1) Unitary representation associated to G ⊋ S. Let S be a G-space
with finite invariant measure, where G is locally compact, Hausdor!, and
second countable. For each g ↓ G, let ↼(g) : L2(S) ↘ L2(S) be the unitary
operator defined by (↼(g)f)(s) = f(g↑1

s). Then, ↼ : G ↘ U(L2(S)) is a
unitary representation (see Example A.5.5), called the Koopman representation
of G on S.

(2.4.2) Ergodicity in terms of the representation. If A ≃ S is measurable
and G-invariant, then ωA ↓ L2(S) is G-invariant, hence so will be its projection
fA onto

L2
0(S) =

{
f ↓ L2(S) :



S

fdµ = 0

}
,

the orthogonal complement of C in L2(S). If A is neither null nor conull, then
ωA is not constant, thus fA ↖= 0. Therefore, if G is not ergodic, there exist
non-zero invariant vectors on L2

0(S).

Conversely, suppose that G is ergodic on S and f ↓ L2
0(S) is G-invariant. This

means that for each g ↓ G, f(s) = f(g↑1
s) for a.e. s ↓ S (such f is called
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2.4. Translation into a statement about unitary representations

essentially invariant). One would like to use Proposition 1.2.5 to conclude
that f is constant a.e. on S, but notice that the proposition requires f to be
strictly invariant, not essentially invariant. If G is countable, we could easily
fix this by considering

S0 =
⋂

g↔G

{s ↓ S : f(g↑1
s) = f(s)}.

Then, S0 is a G-invariant measurable set, and defining f̃(s) = f(s) for s ↓ S0

and f̃(s) = 0 for s /↓ S0, we have that f̃ is strictly G-invariant and f̃ = f

a.e. We can apply Proposition 1.2.5 to conclude that f̃ is essentially constant,
which implies that f is also essentially constant. Since f ↓ L2

0(S), we must
have f = 0 ↓ L2

0(S). Thus, for G countable, ergodicity is equivalent to there
being no non-zero invariant vectors in L2

0(S).

The following lemma shows that the same is true for general G.

Lemma 2.4.3 Let S be a G-space with quasi-invariant measure µ, and Y a
countably generated measurable space. Suppose f : S ↘ Y is measurable and
essentially G-invariant (namely, that for all g ↓ G, f(s) = f(g↑1

s) for a.e.
s ↓ S). Then, there exists a measurable function f̃ : S ↘ Y that is strictly
G-invariant and f̃ = f a.e.

Proof. Since Y is countably generated, it is measurably isomorphic to a Borel
subset of [0, 1] (see A.1.7); we henceforth regard Y ≃ [0, 1].

Let m be a left Haar measure on G. Define

S0 = {s ↓ S : g ⇒↘ f(g↑1
s) is essentially constant on G}.

S0 is measurable: Let ⇀ be a probability measure on G equivalent to m. Define

I(s) =



G

f(g↑1
s) d⇀(g),

so I : S ↘ [0, 1] is measurable by Fubini. Let

J(s) =



G

|f(g↑1
s)⇑ I(s)| d⇀(g).

Again by Fubini, J is measurable, and S0 = J
↑1(0). Hence S0 is measurable.

Since f is essentially G-invariant, for each g ↓ G, µ{s ↓ S : f(g↑1
s) ↖= f(s)} =

0. By Fubini’s theorem, m{g ↓ G : f(g↑1
s) ↖= f(s)} = 0 for µ-a.e. s, so S0 is

conull.

Moreover, S0 is G-invariant: if s ↓ S0 and h ↓ G, then g ⇒↘ f(g↑1(hs)) is
essentially constant on G. Indeed, we have g ⇒↘ f(g↑1

hs) = f((h↑1
g)↑1

s),
which is essentially constant as g varies (being a composition of the essentially
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2.4. Translation into a statement about unitary representations

constant map k ⇒↘ f(k↑1
s) with the m-preserving bijection g ⇒↘ h

↑1
g). Thus

hs ↓ S0.

Finally, define

f̃(s) =


I(s), s ↓ S0,

y0, s /↓ S0,

where y0 is any fixed element in Y . Then, f̃ is the desired G-invariant function
that coincides with f µ-a.e. on S. ↭

Corollary 2.4.4 If S is a G-space with finite invariant measure, then G is
ergodic on S if and only if there are no non-zero G-invariant vectors in L2

0(S).

Remark 2.4.5 This result is no longer true if the measure on S is not finite,
because for an invariant set A of infinite measure, ωA will not be in L2(S).

An example of this is S = R with Lebesgue measure and G = Z acting by
translations n · x = x + n. This action is clearly not ergodic. However, if
f ↓ L2

0(R) is Z-invariant, we have f(x + n) = f(x) for all n ↓ Z, so f is
1-periodic. But a non-zero 1-periodic function cannot lie in L2(R), hence the
only Z-invariant vector in L2

0(R) is 0.

We also formulate the following result, generalizing Proposition 1.2.5.

Corollary 2.4.6 If S is an ergodic G-space, Y is countably separated, and
f : S ↘ Y is measurable and essentially G-invariant, then f is essentially
constant.

By virtue of Corollary 2.4.4, Moore’s theorem 2.3.4 follows from the following
result:

Theorem 2.4.7 Let G = G1 ↙ · · · ↙ Gn be a direct product of connected
simple non-compact Lie groups with finite center, and suppose ↼ is a unitary
representation of G (on a separable Hilbert space) so that for each Gi, ↼|Gi has
no invariant vectors. If H ↗ G is a closed subgroup and ↼|H has a non-zero
invariant vector, then H is compact.

Indeed, assuming Theorem 2.4.7, take ↼ to be the Koopman representation of
G on L2

0(S). Since the action of G on S is irreducible, each factor Gi is ergodic
on S, hence by Corollary 2.4.4 there are no non-zero Gi-invariant vectors in
L2
0(S), so the hypothesis on ↼|Gi holds. Now if H is not compact, Theorem

2.4.7 implies that ↼|H has no non-zero invariant vectors; by Corollary 2.4.4
this is equivalent to ergodicity of H on S. This is precisely Theorem 2.3.4.

Theorem 2.4.7, in turn, is a consequence of the following result, known as the
Howe-Moore vanishing of matrix coe”cients theorem:
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2.5. Unitary representations of P

Theorem 2.4.8 (Howe-Moore) Let Gi, G, ↼ : G ↘ U(H) be as in Theorem
2.4.7. Then, all matrix coe”cients of ↼ vanish at ↑, namely, for any ↽, ⇁ ↓ H,

▽↼(g)↽, ⇁̸ ↘ 0 as g ↘ ↑.

Here g ↘ ↑ means that g leaves compact subsets of G.

Indeed, assuming Theorem 2.4.8, if ↽ ↓ H is a non-zero invariant vector for
↼|H , then the matrix coe”cient ▽↼(g)↽, ↽̸ is constantly positive along H , hence
H is compact, which proves Theorem 2.4.7.

The remaining two sections are dedicated to the proof of Howe-Moore’s theorem,
hence concluding our discussion.

2.5 Unitary representations of P

From now on, Hilbert spaces will be assumed to be separable.

It is necessary to develop first some necessary background in order to prove
Theorem 2.4.8. We will first prove said theorem in the case G = SL(2,R), and
then extend the result to the general case.

To study representations of SL(2,R), we first study representations of the
upper triangular subgroup P ↗ SL(2,R):

P =

{(
a b

0 a
↑1

)
: a ↖= 0, b ↓ R

}
.

Then, we will use the fact that SL(2,R) is generated together by P and P , the
lower triangular subgroup. The representation theory of P that we need will
follow from its structure as a semidirect product:

P = AN, N =

{(
1 b

0 1

)
: b ↓ R

}
, A =

{(
a 0
0 a

↑1

)
: a ↖= 0

}
,

where N ⇓ (R,+) is normal in P and A ⇓ (R↓
, ·) ↗ P .

The necessary background for this section is summarized in section A.7 of
the appendix. We begin by studying briefly the representation theory of Rn.
Proofs of the following assertions can be found in [Dix69, Mac76, Loo53].

(2.5.1) Irreducible unitary representations of Rn. Since R
n is Abelian

(and because of Schur’s Lemma), all its irreducible unitary representations are
one-dimensional. Hence, the unitary representations of Rn are precisely its
characters (see Section A.6). The characters of Rn are precisely the functions
of the form

⇀ς : R
n ↘ S1, t ⇒↘ ei↘ς,t≃,
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2.5. Unitary representations of P

for φ ↓ R
n. In other words, if Rn is the set of all characters of Rn, then φ ⇒↘ ⇀ς

is a group isomorphism R
n ⇓ Rn.

(2.5.2) Direct integral models. Let µ be a ε-finite measure on Rn and let

(Hφ)φ↔R̂n be a (piecewise constant) field of Hilbert spaces over Rn (see Appendix

A.7). Form the Hilbert space
∫
⇐

R̂n Hφ dµ(⇀) and define the representation

↼(µ,Hω) : R
n ↘ U

∫
⇐

R̂n Hφ dµ(⇀)

by

(↼(µ,Hω)(t)f)(⇀) = ⇀(t) f(⇀) (t ↓ R
n
, ⇀ ↓ Rn).

Then ↼(µ,Hω) is a unitary representation acting fiberwise by multiplication by
the character ⇀. Equivalently, this construction is the direct integral

↼(µ,Hω) =


⇐

R̂n


dimHφ


⇀ dµ(⇀),

where, for a representation ε and n ↓ N → {0,↑}, we use the shorthand

nε :=
n

i=1

εi, εi = ε.

The following summarizes the representation theory of Rn.

Proposition 2.5.3 Let ↼ : Rn ↘ U(H) be a unitary representation.

(1) There exist a ε-finite Borel measure µ on Rn and a field (Hφ)φ↔R̂n of
Hilbert spaces such that

↼ ⇓ ↼(µ,Hω) =


⇐

R̂n


dimHφ


⇀ dµ(⇀).

(2) If ↼(µ,Hω) and ↼(µ↑,H↑
ω)

are two such direct–integral models, then they are
unitarily equivalent if and only if

(a) µ ⇐ µ
↗ (the measures are equivalent), and

(b) dimHφ = dimH↗

φ
for µ-a.e. ⇀ (equivalently, for µ

↗-a.e. ⇀).

We now consider groups having R
n as a normal subgroup. For that, we want

to study the e!ect of an automorphism of Rn on its representation theory. Let
A : Rn ↘ R

n be a continuous group automorphism. Let ϖ : Rn ↘ Rn be its
adjoint automorphism, given by

[ϖ(⇀)](t) = ⇀(A↑1(t)).

Moreover, if ↼ : R
n ↘ U(H) is any unitary representation of R

n, we let
ϖ(↼) : Rn ↘ U(H) be the unitary representation

[ϖ(↼)](t) = ↼(A↑1(t)).

If ↼ is given in the form ↼ = ↼(µ,Hω), we wish to express ϖ(↼) in a similar form.
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2.5. Unitary representations of P

Proposition 2.5.4 Let A ↓ Aut(Rn), let ϖ : Rn ↘ Rn be its adjoint auto-
morphism, and let ↼ = ↼(µ,Hω). Then:

(1) ϖ(↼) is unitarily equivalent to ↼(ω↓µ,Hε→1ω)
.

(2) If V :
∫
⇐

R̂n Hφ dµ(⇀) ↘
∫
⇐

R̂n Hω→1φ d(ϖ↓µ)(⇀) is a unitary equivalence

between ϖ(↼) and ↼(ω↓µ,Hε→1ω)
, then, for every Borel set E ≃ Rn,

V

(
⇐

E

Hφ dµ(⇀)

)
=


⇐

ω(E)
Hω→1φ d(ϖ↓µ)(⇀).

Proof. (1) Define

T :


⇐

R̂n
Hφ dµ(⇀) ⇑↘


⇐

R̂n
Hω→1φ d(ϖ↓µ)(⇀), (Tf)(⇀) = f


ϖ
↑1

⇀

.

Measurability of ⇀ ⇒↘ Tf(⇀) is clear since ϖ
↑1 is a Borel bijection of Rn.

Moreover,

↔Tf↔2 =


R̂n

f(ϖ↑1
⇀)
2 d(ϖ↓µ)(⇀) =



R̂n
↔f(⇀)↔2 dµ(⇀),

so T is an isometry. Since ϖ is bijective, (T↑1
g)(⇀) = g(ϖ⇀) defines the inverse

map, hence T is unitary.

Put ↼↗ = ↼(ω↓µ,Hε→1ω)
. For t ↓ R

n and ⇀ ↓ Rn,

T ϖ(↼)(t)f


(⇀) =


ϖ(↼)(t)f


(ϖ↑1

⇀)

= (ϖ↑1
⇀)(A↑1

t) f(ϖ↑1
⇀)

= ⇀(t) f(ϖ↑1
⇀)

=

↼
↗(t)Tf


(⇀),

using (ϖ↑1
⇀)(A↑1

t) = ⇀(t). Thus T intertwines ϖ(↼) with ↼
↗, proving (1).

(2) Let V be a unitary equivalence as in the statement. Then T
↑1

V is unitary
and, for all t ↓ R

n,

(T↑1
V )ϖ(↼)(t) = T

↑1
↼
↗(t)V = ↼(t) (T↑1

V ),

i.e. T↑1
V commutes with every ϖ(↼)(t), equivalently with every ↼(t).

Claim. T
↑1

V commutes with every multiplication operator ↼ϱ defined by

(↼ϱf)(⇀) = ς(⇀)f(⇀), ς ↓ L
→(Rn).

Proof of the claim. Suppose ςN ↘ ς pointwise a.e., with ↔ςN↔→, ↔ς↔→ ↗ M .
Then, for all f, g ↓

∫
⇐Hφ dµ(⇀),

▽↼ϱN f, g̸ =


R̂n
ςN (⇀) ▽f(⇀), g(⇀)̸ dµ(⇀)

⇑⇑⇑⇑↘
N⇒→



R̂n
ς(⇀) ▽f(⇀), g(⇀)̸ dµ(⇀) = ▽↼ϱf, g̸,
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by dominated convergence. Hence ↼ϱN ↘ ↼ϱ in the weak operator topology.
If ↼ϱN commutes with a bounded operator A for all N , then passing to the
limit yields ↼ϱA = A↼ϱ.

Therefore it su”ces to prove the assertion for ς ↓ C
→
c (Rn). Identify Rn with

R
n. For N large enough, suppς ∃ (⇑N,N)n. Define ςN to be the (NZ)n-

periodic function that agrees with ς on [⇑N,N ]n. Then ςN ↘ ς pointwise,
so it su”ces to prove the assertion for each ςN .

Each ςN is smooth on the torus Rn
/(NZ)n, hence its Fourier series converges

uniformly to ςN . Consequently, the multiplication operators ↼ϱN are oper-
ator–norm limits of finite linear combinations of the multipliers ⇀ ⇒↘ ⇀(t)
(the trigonometric polynomials). Since T

↑1
V commutes with every ↼(t), it

commutes with their finite linear combinations and with their operator–norm
limits. Thus T↑1

V commutes with ↼ϱN for all N , and by the first paragraph
also with ↼ϱ. This proves the claim.

Apply the claim with ς = ωE . Then ↼↼E is the orthogonal projection onto∫
⇐

E
Hφ dµ(⇀). Since T

↑1
V commutes with ↼↼E , its range is invariant under

T
↑1

V , i.e.

(T↑1
V )


⇐

E

Hφ dµ(⇀)

≃


⇐

E

Hφ dµ(⇀).

Applying T gives

V


⇐

E

Hφ dµ(⇀)

≃ T


⇐

E

Hφ dµ(⇀)

=


⇐

ω(E)
Hω→1φ d(ϖ↓µ)(⇀),

where the last equality follows from (Tf)(⇀) = f(ϖ↑1
⇀). Finally, applying the

same argument to V
↑1

T completes the proof. ↭
We now apply this proposition to representations of (locally compact, Hausdor!,
second countable) groups having R

n as a normal subgroup. Suppose G is such
a group. Then for each g ↓ G, conjugation by g gives an automorphism of
R
n. Therefore, we have an action of G on Rn given by (g · ⇀)(t) = ⇀(g↑1

tg).
Similarly, if ↼ : R

n ↘ U(H) is a unitary representation of R
n, we define

(g · ↼)(t) = ↼(g↑1
tg). Note that Proposition 2.5.4 applies separately for each g

by letting A be conjugation by g.

Proposition 2.5.5 Suppose R
n ↗ G is a normal subgroup, and ↼ : G ↘ U(H)

is a unitary representation. Write ↼|Rn as ↼(µ,Hω) for some (µ,Hφ) as in
Proposition 2.5.3. Then:

(1) µ is quasi-invariant under the action of G on Rn.

(2) If E ≃ Rn is Borel, let HE =
∫
⇐

E
Hφ dµ(⇀). Then ↼(g)HE = HgE for

any g ↓ G.

(3) If ↼ is irreducible, then µ is ergodic and dimHφ is constant µ-a.e.
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Proof. (1) Fix g ↓ G. For t ↓ R
n, ↼(g↑1

tg) = ↼(g)↑1
↼(t)↼(g), so ↼(g)

implements a unitary equivalence between ↼|Rn and g · (↼|Rn). By Proposition
2.5.4 (1) with A = cg|Rn , we have

g · (↼|Rn) ⇓ ↼(g↓µ,Hg→1ω)
.

Since ↼|Rn ⇓ g · (↼|Rn), it follows that ↼(µ,Hω) ⇓ ↼(g↓µ,Hg→1ω)
. Applying

Proposition 2.5.3 (2) to these two direct–integral models yields µ ⇐ g↓µ. Since

g ↓ G was arbitrary, µ is quasi-invariant under the G–action on Rn.

In addition, Proposition 2.5.3 (2) also gives dimHφ = dimHg→1φ for µ-a.e. ⇀,
i.e. the function ⇀ ⇒↘ dimHφ is essentially G–invariant (and henceforth we
assume ⇀ ⇒↘ Hφ is essentially invariant under G. We will use this below).

(2) Fix g ↓ G. Since µ ⇐ g↓µ, let ρg = dµ
d(g↓µ)

be a Radon–Nikodym derivative

on Rn. Define

Tg :


⇐

R̂n
Hφ dµ(⇀) ⇑↘


⇐

R̂n
Hg→1φ d(g↓µ)(⇀), (Tgf)(⇀) = ρg(⇀)

1/2
f(⇀).

Then Tg is an isometric surjection by construction and, for t ↓ R
n,

(Tg ↼(t)f)(⇀) = ρg(⇀)
1/2

⇀(t)f(⇀) = ⇀(t) (Tgf)(⇀) =

↼(g↓µ,Hg→1ω)

(t)Tgf

(⇀),

so Tg intertwines ↼(µ,Hω) with ↼(g↓µ,Hg→1ω)
. Consequently, Tg ↼(g) : g·


↼|Rn


⇓

↼(g↓µ,Hg→1ω)
is a unitary equivalence. Applying Proposition 2.5.4 (2) with ϖ = g

gives, for every Borel E ≃ Rn,

Tg ↼(g)HE =


⇐

gE

Hg→1φ d(g↓µ)(⇀).

Finally, since (Tg)↑1 acts fiberwise by multiplication with ρ
↑1/2
g , we have

(Tg)
↑1


⇐

gE

Hg→1φ d(g↓µ)(⇀)

= HgE .

Therefore ↼(g)HE = HgE , as claimed.

(3) Suppose ↼ is irreducible. If µ were not ergodic, there would exist a Borel G-

invariant set E ≃ Rn which is neither null nor conull. Then HE =
∫
⇐

E
Hφ dµ(⇀)

is a non-zero proper closed subspace of
∫
⇐Hφ dµ, and, by part (2), it is

G-invariant: ↼(g)HE = HgE = HE for all g ↓ G. This contradicts the
irreducibility of ↼. Hence µ is ergodic.

By the discussion after part (1), the function ⇀ ⇒↘ dimHφ is essentially G-
invariant. Since it is measurable, ergodicity of µ implies that it is essentially
constant, i.e., constant µ-a.e. ↭

29



2.5. Unitary representations of P

We are now ready to apply this discussion to the case of P = AN .

Theorem 2.5.6 Let ↼ be a unitary representation of P = AN on H. Then,
one of the following holds:

(1) ↼|N has non-trivial invariant vectors.

(2) For g ↓ A and any vectors ↽, ⇁ ↓ H, ▽↼(g)↽, ⇁̸ ↘ 0 as g ↘ ↑ (in A).

Corollary 2.5.7 Let ↼ be a unitary representation of P . Then any A-
invariant vector is also P -invariant.

Proof. (Proof of Corollary 2.5.7) Let W = {↽ ↓ H : ↼(n)↽ = ↽ for all n ↓ N}
be the subspace of N -invariant vectors. Since N is normal in P , for p ↓ P and
n ↓ N we have pnp

↑1 ↓ N , hence ↼(n)↼(p)↽ = ↼(p)↼(p↑1
np)↽ = ↼(p)↽ for

↽ ↓ W. Thus W is P -invariant, and so is W⇑.

Consider the representation on W⇑. By definition it has no non-zero N -
invariant vectors, so we are in case (2) of the theorem above. In particular,
there are no A-invariant vectors in W⇑: if ⇁ ↓ W⇑ were A-invariant then
▽↼(a)⇁, ⇁̸ = ↔⇁↔2 for all a ↓ A, contradicting the vanishing conclusion in (2).

Let ↽ ↓ H be A-invariant and write ↽ = ↽0 + ↽1 with ↽0 ↓ W and ↽1 ↓ W⇑.
Since W and W⇑ are A-invariant, ↽1 is also A-invariant; by the previous
paragraph, ↽1 = 0. Hence ↽ = ↽0 ↓ W is N -invariant. As A and N generate
P = AN , ↽ is P -invariant. ↭

Proof. (Proof of Theorem 2.5.6) Identify N ⇓ R. Write ↼|N = ↼(µ,Hω) as in
Proposition 2.5.3.

If µ({0}) > 0, then H{0} ↖= {0} and consists of N -invariant vectors, so we are
in case (1).

Assume now µ({0}) = 0. We prove (2). The action of A on N by conjugation
is given by

g · nb · g↑1 = na2b for g =

a 0
0 a

→1


↓ A,

hence on N ⇓ R we have (with our convention g · ⇀(t) = ⇀(g↑1
tg))

g · s = a
↑2

s, s ↓ R.

Let E,F ∃ R \ {0} be compact sets. Then for g ↓ A with |a| su”ciently large
we have (g · E) ′ F = ∞.

Fix unit vectors f, h ↓
∫
⇐

R
Hφ dµ(⇀) and ε > 0. Since µ({0}) = 0, there exist

compact sets E,F ∃ R \ {0} with

↔ωEf ⇑ f↔ ↗ ε, ↔ωFh⇑ h↔ ↗ ε.
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2.6. Vanishing of matrix coe”cients

(Indeed, since ↔f(⇀)↔2, ↔h(⇀)↔2 ↓ L
1(µ) and µ({0}) = 0, choose 0 < ▷ < M so

that
∫
|φ|<↽

↔f(⇀)↔2 dµ +
∫
|φ|>M

↔f(⇀)↔2 dµ < ε
2, and set E = {▷ ↗ |⇀| ↗ M};

similarly for h.) Then, for any g ↓ A,

▽↼(g)f, h̸⇑▽↼(g)(ωEf),ωFh̸
 =

▽↼(g)(f ⇑ ωEf), h̸+ ▽↼(g)ωEf, h⇑ ωFh̸


↗ ↔↼(g)(f ⇑ ωEf)↔ ↔h↔+ ↔↼(g)ωEf↔ ↔h⇑ ωFh↔
↗ ↔f ⇑ ωEf↔+ ↔h⇑ ωFh↔ ↗ 2ε.

By Proposition 2.5.5 (2), ↼(g)HE = HgE . Choosing g ↓ A with gE ′ F = ∞,
we have HgE ¬ HF , hence

▽↼(g)(ωEf),ωFh̸ = 0.

Therefore |▽↼(g)f, h̸| ↗ 2ε for all such g. Since ε > 0 was arbitrary, ▽↼(g)f, h̸ ↘
0 as g ↘ ↑ in A. This is (2). ↭

2.6 Vanishing of matrix coe!cients

We begin with the proof of Howe-Moore’s Theorem (Theorem 2.4.8) for G =
SL(2,R), which will be used to prove the general case.

(2.6.1) Cartan decomposition. Let us first recall the polar decomposition
of a matrix. If T ↓ SL(n,R), then we can write T = US for U orthogonal
and S symmetric positive definite. Since S is symmetric, it is orthogonally
diagonalizable, namely, there exists an orthogonal matrix U0 such that S =
U0DU

↑1
0 , where D is diagonal and its diagonal entries are positive. Hence, any

T ↓ SL(n,R) has an expression T = U1DU2, where Ui ↓ SO(n,R) and D is a
positive diagonal matrix. Thus, we can write

SL(n,R) = KAK,

where K = SO(n,R) is compact and A is the group of positive diagonals. This
is called the Cartan decomposition of SL(n,R).

Lemma 2.6.2 Let G be a (locally compact Hausdor! second countable) group
admitting a decomposition G = KAK with K compact and A a closed subgroup.
Let ↼ be a unitary representation of G. If for all matrix coe”cients f of ↼ one
has f(a) ↘ 0 as a ↘ ↑, a ↓ A, then all matrix coe”cients of ↼ vanish at ↑
on G.

Proof. Fix ↽, ⇁ ↓ H and set f(g) = ▽↼(g)↽, ⇁̸. Note that for g = k1ak2 we
have

f(g) = ▽↼(g)↽, ⇁̸ = ▽↼(a)↼(k2)↽, ↼(k1)↑1
⇁̸.

Suppose by contradiction that f does not vanish at ↑ on G. Then there exist
ε > 0 and gn ↘ ↑ in G with |f(gn)| ⇔ ε for all n. Write gn = k1,nank2,n with
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ki,n ↓ K, an ↓ A. By compactness of K, passing to a subsequence, we may
assume k2,n ↘ k and k

↑1
1,n ↘ k

↗ in K.

Since ↼ is strongly continuous, we have ↼(k2,n)↽ ↘ ↼(k)↽ and ↼(k1,n)↑1
⇁ ↘

↼(k↗)⇁. Hence for n large,

▽↼(gn)↽, ⇁̸ ⇑ ▽↼(an)↼(k)↽,↼(k↗)⇁̸
 < ⇀

2 ,

so
▽↼(an)↽↗, ⇁↗̸

 ⇔ ε/2 with ↽
↗ = ↼(k)↽, ⇁↗ = ↼(k↗)⇁.

Finally, if (an) were contained in a compact subset of A, then (gn) would be
contained in the compact set K · ({an}) · K, contradicting gn ↘ ↑. Thus
an ↘ ↑ in A, and we have found a matrix coe”cient along A that does not
vanish at ↑. This contradicts the hypothesis, completing the proof. ↭

We prove now Theorem 2.4.8 for G = SL(2,R).

Theorem 2.6.3 If ↼ is a unitary representation of G = SL(2,R) with no
invariant vectors, then all matrix coe”cients of ↼ vanish at ↑.

Proof. By Lemma 2.6.2, it su”ces to prove vanishing along the diagonal
subgroup A. By Theorem 2.5.6, it is enough to show that ↼|N has no non-zero
invariant vector.

Suppose, towards a contradiction, that 0 ↖= ↽ ↓ H is N -invariant. Define
f : G ↘ C by f(g) = ▽↼(g)↽, ↽̸. Then f is continuous and bi-N -invariant: for
n1, n2 ↓ N ,

f(n1gn2) = ▽↼(n1)↼(g)↼(n2)↽, ↽̸ = ▽↼(g)↽, ↽̸ = f(g).

RightN -invariance implies that f descends to a continuous function ς : G/N ↘
C, and left N -invariance makes ς N -invariant for the left action of N on G/N .

In G = SL(2,R), N is the stabilizer of e1 = (1, 0)t under the natural linear
action on R

2. Hence the orbit map G ↘ R
2 \ {0}, g ⇒↘ g · e1, induces a

G-equivariant homeomorphism G/N ⇓ R
2 \ {0}. Under this identification, the

left action of N on G/N corresponds to the usual matrix multiplication of N
on R

2 \ {0}.

The N -orbits in R
2 \ {0} are precisely: (i) each horizontal line {(x, y) : y = c}

with c ↖= 0, and (ii) the points on the x-axis {(x, 0) : x ↖= 0} (since N acts by
(x, y) ⇒↘ (x+ by, y)). Any continuous function on R

2 \ {0} which is constant
on these orbits must be constant on the x-axis.

Under G/N ⇓ R
2 \ {0}, the x-axis corresponds to P/N ≃ G/N . Hence ς is

constant on P/N , i.e., f is constant on P . Since ↼ is unitary, for any p ↓ P

we have ↔↼(p)↽↔ = ↔↽↔, and by Cauchy–Schwarz,

|▽↼(p)↽, ↽̸| ↗ ↔↼(p)↽↔ ↔↽↔ = ↔↽↔2.
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Constancy of f on P gives ▽↼(p)↽, ↽̸ = ↔↽↔2, so we have Cauchy–Schwarz
equality, hence ↼(p)↽ = c(p) ↽ with |c(p)| = 1. Plugging back into f yields
c(p) = 1, hence ↼(p)↽ = ↽ for all p ↓ P . Thus ↽ is P -invariant, and consequently
f is bi-P -invariant.

Finally, P has a dense orbit on G/P (identify G/P ⇓ RP
1 and note that P

acts transitively on the open cell), hence a continuous bi-P -invariant function
on G must be constant. Therefore f is constant on G, which forces ↽ to
be G-invariant, contradicting the hypothesis. This proves that ↼|N has no
non-zero invariant vector, and the theorem follows. ↭
Now, we prove it for G = SL(n,R).

Theorem 2.6.4 If ↼ is a unitary representation of G = SL(n,R) with no
invariant vectors, then all matrix coe”cients of ↼ vanish at ↑.

Proof. Let A ↗ G be the subgroup of diagonal matrices. We write an element
a ↓ A as a = (a1, . . . , an), meaning a = diag(a1, . . . , an),


n

i=1 ai = 1. Let B
be the set of matrices b = (cij) with cii = 1, cij = 0 for i ⇔ 2, i ↖= j, namely,

B =






b =





1 b2 b3 · · · bn

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




: bi ↓ R






.

We denote such an element by b = (1 b2 · · · bn). A direct calculation shows
that for a = diag(a1, . . . , an) ↓ A and b ↓ B,

a b a
↑1 =





1 a1
a2
b2

a1
a3
b3 · · · a1

an
bn

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




↓ B.

Hence aBa
↑1 = B for all a ↓ A. It follows that H = AB is a subgroup of G and

that B is normal in H . The group B is isomorphic to R
n↑1 via b ∅ (b2, . . . , bn).

By Lemma 2.6.2, it su”ces to prove that the matrix coe”cients of ↼|A vanish
at ↑. In the SL(2,R) case we achieved this via the representation of P ; here
we analyze the representation of H = AB.

Identify B ⇓ ⫅̸Rn↑1 ⇓ R
n↑1. By Proposition 2.5.3, we can write

↼|B ⇓ ↼(µ,Hω) (⇀ ↓ ⫅̸Rn↑1),

where µ is a ε-finite Borel measure on ⫅̸Rn↑1 and Hφ is a measurable field of
Hilbert spaces. By Proposition 2.5.4, the adjoint action of a ↓ A on B induces

the pushforward a↓µ on ⫅̸Rn↑1 and acts on fibers by Hφ ⇒↘ Ha→1φ.
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Since aba↑1 scales the coordinates by (a1/aj) bj (for j = 2, . . . , n), the induced

action on ⫅̸Rn↑1 is
(a · ⇀)j = a1

aj
⇀j , j = 2, . . . , n.

Let E,F ≃ ⫅̸Rn↑1 be compact sets disjoint from the coordinate hyperplanes
{⇀j = 0}, j = 2, . . . , n. Then for a ↓ A outside a su”ciently large compact
set we have (a · E) ′ F = ∞. Arguing exactly as in the proof of Theorem
2.5.6 (using Proposition 2.5.5 (2)), we deduce: if µ

⋃
n

j=2{⇀j = 0}

= 0, then

all matrix coe”cients of ↼|A vanish at ↑. By Lemma 2.6.2, this implies the
theorem.

Therefore, it remains to show that µ({⇀j = 0}) > 0 is impossible for each
j = 2, . . . , n. Fix i ↓ {2, . . . , n} and suppose µ({⇀i = 0}) > 0. Consider the
subgroup

Bi = { b ↓ B : bj = 0 for all j ↖= i },

which is isomorphic to R. In the direct–integral model for ↼|B, the subspace

H{φi=0} =


⇐

{φi=0}
Hφ dµ(⇀)

is non-zero and Bi-invariant (indeed, ⇀i = 0 means Bi acts trivially on the
fiber). Define the closed subgroup Hi ↗ G by

Hi =










ϖ 0 · · · ◁ · · · 0
0 1 0 0
...

. . .
...

...
ϱ 0 · · · ▷ · · · 0
...

...
. . .

...
0 0 · · · 0 · · · 1





: ϖ▷ ⇑ ◁ϱ = 1






⇓ SL(2,R),

where the only possibly non-trivial entries outside the diagonal lie in the
2↙ 2 block on rows/columns {1, i} (all other o!–diagonal entries are 0, and
all remaining diagonal entries are 1). In particular, Bi ↗ Hi corresponds to
ϖ = ▷ = 1, ϱ = 0, ◁ ↓ R. Thus Bi ↗ Hi ↗ G and Bi is non-compact in Hi.

Restrict ↼ to Hi. We obtain a unitary representation of Hi ⇓ SL(2,R) with a
non-zero Bi-invariant vector. By Theorem 2.6.3 (applied inside Hi) and the
fact that Bi is non-compact, this forces the existence of a non-zero Hi-invariant
vector. In particular, the diagonal subgroup

Ai = Hi ′A ⇓
{
diag(a1, . . . , an) : a1ai = 1, aj = 1 (j ↖= 1, i)

}

has non-trivial invariant vectors.

Let
W = {↽ ↓ H : ↼(a)↽ = ↽ for all a ↓ Ai}
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be the subspace of Ai-fixed vectors. It su”ces to show that W is G-invariant.
Indeed, the representation ↼W ofG onW has kernel containing Ai; by simplicity
of G = SL(n,R), this forces ker↼W = G, so every vector in W is G-invariant,
contradicting our assumptions.

We now prove G-invariance of W. For k ↖= j, let Bkj ↗ G be the one-
dimensional unipotent subgroup

Bkj =










1
. . .

1 b

. . .

1
1





: b ↓ R






,

where the only o!–diagonal entry that may be non-zero is in row k, column j

(all diagonal entries are 1). Consider two cases.

(a) If k /↓ {1, i} and j /↓ {1, i}, then Bkj commutes with Ai, hence preserves
W.

(b) If {k, j}′ {1, i} ↖= ∞, then Ai normalizes Bkj . Indeed, writing bkj ↓ Bkj for
the matrix with (k, j)-entry equal to b ↓ R and all other o!–diagonal entries
0 (and 1’s on the diagonal), and a = diag(a1, . . . , an) ↓ Ai (so a1ai = 1 and
aϖ = 1 for 0 /↓ {1, i}), we have

a bkj a
↑1 = b

↗

kj
, with (k, j)-entry b

↗ =
ak

aj
b ↓ R.

In particular, when {k, j} = {1, i} we get

a b1i a
↑1 = b

↗

1i with entry b
↗ = a

2
1b, a bi1 a

↑1 = b
↗

i1 with entry b
↗ = a

↑2
1 b,

so the 2–dimensional subgroup AiB1i (resp. AiBi1) is isomorphic to P = AN

(resp. its opposite), via

Ai ℜ diag(a1, 1, . . . , a
↑1
1 , . . . , 1) ⇒⇑↘

(
a1 0
0 a

↑1
1

)
, b1i ⇒⇑↘

(
1 b

0 1

)
.

By Corollary 2.5.7, every Ai–invariant vector is then B1i– (or Bi1–) invariant.
For the remaining possibilities with exactly one of k, j in {1, i}, choose a
permutation matrix p ↓ K sending that pair of indices to {1, i}. Then ↼(p)W
is pAip

↑1–invariant; applying the previous argument to the representation
conjugated by p shows that ↼(p)W is Bp(k)p(j)–invariant. Conjugating back by
p yields that W is Bkj–invariant. Hence in all cases Bkj preserves W.

Finally, Ai ↗ A and A is Abelian, so it preserves W . Since G is generated by
A together with all the subgroups Bkj , it follows that W is G-invariant. This
completes the proof. ↭
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Finally, we sketch the proof of the general case, which goes very similarly as
the above.

Proof. (Proof sketch of Theorem 2.4.8) Let G be as in the theorem. For defi-
nitions and basic facts about the following argument, check section A.8 of the
Appendix. Fix a maximal R–split torus A ↗ G, and write a = Lie(A). We
have the root space decomposition (A.8.7)

g = g0 ℑ


ω↔!

gω, gω = {X ↓ g : [H,X] = ϖ(H)X ⊤H ↓ a},

where $ ≃ a↓ \ {0} is the root system.

As in Proposition A.8.13, there exists a semisimple G
↗ such that A ↗ G

↗ ↗ G,
G

↗ is closed in G, A is a maximal R–split torus of G↗, and its Lie algebra is

g↗ = aℑ


ω↔!

g↗ω,

where all the g↗ω are one-dimensional.

As in Proposition A.8.14, choose a set S ≃ $ of linearly independent positive
roots such that a↓ = span(S) and ϖ + ◁ /↓ $ for all ϖ,◁ ↓ S. The Lie
subalgebra

b =


ω↔S

g↗ω

is Abelian, so B = exp(b) ↗ G
↗ is an Abelian subgroup normalized by A;

moreover, dimB = |S| = dimA. Finally, exp : b ↘ B is a di!eomorphism,
hence we can identify B ⇓ R

dimA. Indeed: first observe that for each X ↓ b,
adg↑(X) is nilpotent by construction of b (write X =

∑
ω↔S

cωXω and note
that each summand satisfies [Xω, g↗⇁ ] ≃ g↗

ω+⇁
for fixed ◁ ↓ $, so adg↑(X)n(g↗

⇁
)

is zero for n large enough). Furthermore, B ′ Z(G↗) = {e}, because any
z = exp(X) ↓ B ′ Z(G↗) satisfies id = AdG↑(expX) = exp(adg↑(X)), but this
forces adg↑(X) = 0 by nilpotency of adg↑(X), hence X = 0 by semisimplicity
of g↗, and z = exp(0) = e. This lets us identify B ⇓ AdG↑(B) and b ⇓ adg↑(b).
But adg↑(b) is nilpotent, hence exp : adg↑(b) ↘ AdG↑(B) is a di!eomorphism.

The representation of AB can be analyzed exactly as in the SL(n,R) case
by applying Proposition 2.5.3 and Proposition 2.5.4. As in the rank–one
reductions (using the embedded SL(2,R)’s generated by g↗±ω and aω = RHω),
we obtain that either all matrix coe”cients along A vanish at ↑, or there
exists a one–parameter subgroup A0 ↗ A and a non-zero vector fixed by A0.

To justify the rank–one step uniformly, one may work in the universal covering
⫆̸SL(2,R) of the SL(2,R)–subgroups if needed: for N ↗ SL(2,R), its connected

lift Ñ ↗ ⫆̸SL(2,R) is still isomorphic to N , and the argument proving that
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A–invariant vectors are N–invariant (Corollary 2.5.7) carries over by lifting
the P = AN–action and projecting back.

Finally, as in the SL(n,R) proof, set W = {↽ : ↼(a)↽ = ↽ ⊤a ↓ A0}. The root
subgroups Uω either commute with A0 or, together with A0, generate a copy of
Pω ⇓ AN inside the corresponding SL(2,R); by Corollary 2.5.7 they preserve
W . Since G

↗ is generated by A and the root subgroups Uω, it follows that W
is G↗–invariant. Now write G =


i
Gi with each Gi simple and non-compact,

and note that A0 ↗ Gj for some factor Gj . Applying the previous argument
inside Gj shows that W is Gj–invariant, hence ↼|Gj has a non-zero invariant
vector, contradicting the hypothesis of the theorem. Therefore, only the first
alternative can occur, and all matrix coe”cients of ↼ vanish at ↑. ↭
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Appendix A

Preliminaries

A.1 Measurable spaces

The following two sections are dedicated to collecting some definitions and
basic facts about measure theory. For an extended presentation on the basics
of measure theory, check [Coh13].

Definition A.1.1 (Measurable space) Let X be a set. A collection B of
subsets of X is called a ε-algebra if it contains the empty set, is closed under
complements, and closed under countable unions. In this case, (X,B) is called
a measurable space. If A is any family of subsets of X, the smallest ε-algebra
containing A is called the ε-algebra generated by A .

Remark A.1.2 Every topological space X is a measurable space with the
Borel ε-algebra B generated by open sets. Any B ↓ B is called a Borel subset
of X.

Definition A.1.3 (Measurable maps) A map f : (X,B) ↘ (Y,C ) be-
tween measurable spaces is called measurable if f↑1(C) ↓ B for every C ↓ C .
It is called a (measurable) isomorphism if it is bijective and both f and f

↑1

are measurable.

We will introduce additional methods for defining a ε-algebra on a given set,
as outlined in the following definition.

Definition A.1.4 (Constructions) (a) Let X be a set, (Y,C ) a measurable
space, and f : X ↘ Y a mapping. The pullback ε-algebra f

↓C is the coarsest
ε-algebra that makes f measurable, namely,

f
↓C = {f↑1(C) : C ↓ C }.

In particular, whenever X is a subset of a measurable space (Y,C ), we define
the subspace ε-algebra on X to be the pullback ε-algebra under the inclusion
map i : X 1↘ Y .
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(b) Let (X,B) be a measurable space, Y a set, and f : X ↘ Y a mapping.
The pushforward ε-algebra f↓B on Y is the finest ε-algebra that makes f

measurable, that is,

f↓B = {C ≃ Y : f↑1(C) ↓ B}.

In particular, whenever ⇐ is an equivalence relation on a measurable space X,
we define the quotient ε-algebra on X/ ⇐ to be the pushforward ε-algebra
under the quotient map p : X ↘ X/ ⇐.

Definition A.1.5 Let X be a measurable space.

(a) X is called countably separated if there exists a countable family of
measurable sets {Ai}i which separates points in the following sense: for
any two distinct points x, y ↓ X, there exists an Ai such that x ↓ Ai

and y /↓ Ai, or x /↓ Ai and y ↓ Ai.

(b) X is called countably generated if it is countably separated by a family
{Ai}i which also generates the ε-algebra.

Remark A.1.6 (1) Measurable subsets of countably separated (resp. gener-
ated) spaces are countably separated (resp. generated). One can check this by
intersecting the family of separating sets with the measurable subset.

(2) Any second countable T0 topological space is countably generated. Indeed,
the countable basis for the topology (which generates the Borel ε-algebra)
separates points: if x ↖= y, then there exists an open set U containing x and
not y (or vice versa). Then, there exists a basis element B ≃ U , which is a set
separating x and y.

(3) Hence, any second countable Hausdor! topological space is countably
generated.

(4) Any separable metrizable space (which is therefore second countable and
Hausdor!) is countably generated.

Proposition A.1.7 (1) X is countably separated if and only if there exists
an injective measurable map X ↘ [0, 1].

(2) X is countably generated if and only if X is measurably isomorphic to a
subset of [0, 1].

Proof. Let % = {0, 1}N with the product ε-algebra, and define f : X ↘ % by
f(x)i = ωAi(x) for i ↓ N. Since each ωAi : X ↘ {0, 1} is measurable and the
product ε-algebra is the smallest making all coordinate projections measurable,
f is measurable.

Because {Ai} separates points, for x ↖= y there exists i with ωAi(x) ↖= ωAi(y),
hence f(x) ↖= f(y). Thus f is injective.
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Let ↼i : % ↘ {0, 1} be the i-th coordinate projection. Then ↼
↑1
i

({1}) is
measurable in %, and

f
↑1


↼
↑1
i

({1})

= Ai.

Intersecting with f(X) gives

f(Ai) = f(X) ′ ↼
↑1
i

({1}),

so f(Ai) is measurable in the subspace (f(X),B(%)|f(X)). This proves the
claim. ↭

Definition A.1.8 (Standard measurable space) A measurable space is
called standard if it is isomorphic to a Borel subset of a complete separable
metric space.

Remark A.1.9 Standard measurable spaces are countably generated, by the
remarks above.

Theorem A.1.10 Any standard measurable space is either finite, isomorphic
to Z, or isomorphic to [0, 1].

Theorem A.1.11 If X is a standard measurable G-space, where G is a locally
compact second countable group, and the action G ⊋ X is smooth (i.e. X/G

is countably separated), then X/G is standard and there exists a measurable
section ς : X/G ↘ X of the natural projection p : X ↘ X/G.

Corollary A.1.12 If H ↗ G is a closed subgroup of a locally compact second
countable group G, then there is a measurable section G/H ↘ G of the natural
projection G ↘ G/H.

A.2 Measures

Definition A.2.1 (Measure) A measure on a measurable space (X,B) is a
function µ : B ↘ [0,↑] which is countably additive and such that µ(∞) = 0.

We call µ a probability measure if µ(X) = 1.

Sets with measure 0 (under µ) are called (µ-)null sets, and sets whose comple-
ment is null are called (µ-)conull sets.

Definition A.2.2 A measure on X is called ε-finite if there exists a countable
collection {Ai}i of measurable sets with finite measure such that

⋃
i
Ai = X.

Definition A.2.3 (Absolute continuity and equivalence of measures)
Let (X,B) be a measurable space, and let µ, ϑ be two measures on X.

(a) We say that µ is absolutely continuous with respect to ϑ (write µ ⊥ ϑ)
if every ϑ-null set is also a µ-null set.
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(b) The measures µ and ϑ are said to be equivalent (write µ ⇐ ϑ) if µ ⊥ ϑ

and ϑ ⊥ µ. Equivalently, if they have the same null sets. This is an
equivalence relation on the set of measures on (X,B). A class under this
equivalence relation is called a measure class.

Remark A.2.4 Every ε-finite measure µ is equivalent to a probability mea-
sure. Indeed, if {Ai}→i=1 is a family of sets of finite measure whose union is X,
it is easily verified that

ϑ : B ⇒↘ ϑ(B) =
→∑

i=1

2↑i
µ(B ′Ai)

µ(Ai)

is a probability measure on X equivalent to µ.

Definition A.2.5 (Borel measure) A Borel measure on a topological space
X is a measure on the Borel ε-algebra of X.

Definition A.2.6 (Radon measure) A Radon measure on a topological
space X is a Borel measure µ which is

(a) finite on compact sets,

(b) outer regular on Borel sets: for any Borel set B,

µ(B) = inf{µ(U) : U ∋ B,U open}, and

(c) inner regular on open sets: for any open set U ,

µ(U) = sup{µ(K) : K ≃ U,K compact}.

We say that µ is regular if, additionally it is inner regular on all Borel sets.

Radon measures are important because they correspond to positive linear
functionals on the space of continuous functions with compact support on
a locally compact Hausdor! topological space X. This makes it possible to
develop measure and integration from the point of view of functional analysis.
The following theorem makes this precise.

Theorem A.2.7 (Riesz-Markov-Kakutani Representation Theorem)
Let X be a locally compact Hausdor! topological space. If & is a positive real
linear functional on Cc(X) (that is, &(f) ⇔ 0 for all f ↓ Cc(X) with f ⇔ 0),
then there exists a unique Radon measure µ on X that represents &, that is,

&(f) =



X

f dµ

for all f ↓ Cc(X).
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Obviously, the converse is true: every Radon measure on X gives rise to
a positive linear functional on Cc(X) in this way. The theorem therefore
establishes a one-to-one correspondence between Radon measures and positive
linear functionals on Cc(X).

Remark A.2.8 Note that the theorem produces a Radon measure, which
by definition is only inner regular on open sets. Fortunately, under mild
conditions, the Radon measures arising from this representation are actually
inner regular on all Borel sets. For instance, any ε-finite Radon measure on a
locally compact Hausdor! space is inner regular on all Borel sets.

We close this section with a useful fact about countably generated spaces with
ε-finite measure.

Theorem A.2.9 ([Coh13]) Let (S,B, µ) be a countably generated ε-finite
measure space. Then, the space Lp(S,B, µ) is separable for all 1 ↗ p < ↑.

A.3 Measures and topological groups

In this section, G is a locally compact, Hausdor! topological group.

Definition A.3.1 (Haar measure) A (left) (resp. right) Haar measure on
G is a nonzero Radon measure µ on G which satisfies µ(gA) = µ(A) (resp.
µ(Ag) = µ(A)) for all g ↓ G and all Borel sets A ≃ G.

In virtue of the Riesz-Markov-Kakutani Representation Theorem, the Haar
measure is equivalent to a positive linear functional on Cc(G). We hence use
the notation µ(f) =

∫
G
fdµ =

∫
G
f(x)dµ(x) according to what we want to

emphasize.

Theorem A.3.2 ([Fol16]) A left (resp. right) Haar measure on G exists and
is unique up to positive multiplicative constants.

Proposition A.3.3 Open sets have positive Haar measure.

Proof. Since m(G) > 0, by inner regularity, there exists a compact set K ≃ G

with m(K) > 0. For any open set U ≃ G, we have that K can be covered by
finitely many translates of U . Therefore, the measure of U cannot be 0. ↭

Proposition A.3.4 Countable sets in non-discrete topological groups have
Haar measure 0.

Proof. Let G be a non-discrete group, m its Haar measure, and A a countable
set. A is measurable, since it is the countable union of its points, and points in
a Hausdor! space are closed, hence measurable. Since m(A) =

∑
x↔A

m({x}),
we only need to show that points (singletons) in G have measure 0. Note that,
by G-invariance of the Haar measure, all singletons have the same measure.
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Recall that the Haar measure of any compact subset of G is finite. If we
manage to find an infinite compact subset K of G, we would have that
↑ > m(K) ⇔

∑
x↔countable⇓K

m({x}) —where the sum is taken over any
countably infinite subset of K—, making m({x}) = 0.

Suppose no infinite compact subset exists. Since G is non-discrete, let g ↓ G

be a point which is not isolated. Then, by local compactness, it has a compact
neighborhood V , which is finite by assumption, say V = {g, x1, . . . , xn}. Now,
since G is Hausdor!, we can find open neighborhoods Wi of g that do not
contain xi for each i = 1, . . . , n. Finally, the finite intersection of neighborhoods

V ′
(

n⋂

i=1

Wi

)
= {g}

is a neighborhood of g, contradicting the fact that g was not isolated. ↭

Proposition A.3.5 Let G be compact. Then, any measurable automorphism
ς : G ↘ G preserves the Haar (probability) measure µ.

Proof. The measure ς↓µ defined by ς↓µ(A) = µ(ς↑1(A)) is also a Haar
measure, hence it is a constant multiple of µ. But ς↓µ(G) = µ(ς↑1(G)) =
µ(G) = 1, so ς↓µ = µ. ↭

(A.3.6) The modular function. The group G acts on Cc(G) on the left by
conjugation on the argument, that is:

(g · f)(x) = f(g↑1
xg),

for g ↓ G and f ↓ Cc(G). If µ is a Haar measure on G, one can easily verify
that, given g ↓ G, the linear functional

f ⇒↘ µ(g · f)

is also a left Haar measure on G. Hence, there exists a positive constant ’G(g)
such that

µ(g · f) = ’G(g)µ(f).

We call
’G : G ↘ R>0, g ⇒↘ ’G(g)

the modular function of G. It is a continuous homomorphism from G to the
multiplicative group of positive real numbers.

Definition A.3.7 (Unimodular group) G is called unimodular if ’G ℵ 1.

Examples A.3.8 (1) Any Abelian group is unimodular.

(2) Any compact group is unimodular, since there are no nontrivial compact
subgroups of (R>0, ·).
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(3) Any discrete group is unimodular, since the Haar measure is the counting
measure.

(4) Any connected semisimple Lie group G is unimodular, since G = [G,G].
This in turn implies that G does not admit a nontrivial homomorphism to
(R>0, ·).

Unimodularity is important, among other things, because of the following
theorem.

Theorem A.3.9 (Weil formula, [Fol16]) Suppose G is a locally compact
Hausdor! group and H ↗ G is a closed subgroup. There is a G-invariant
Radon measure µ on G/H if and only if ’G|H = ’H . In this case, µ is unique
up to a constant factor, and this factor can be chosen so that we have



G

f(x)dx =



G/H

(

H

f(x↽)d↽

)
dµ(xH)

for f ↓ Cc(G).

In particular, if G and H are unimodular, there is a unique (up to scaling)
G-invariant Radon measure on G/H.

The broader result —when we only assume that G is locally compact Hausdor!
and H is closed— is mentioned in example 1.1.6 (1) of this text. For an
ample treatment, see [Fol16, §2.6]. We summarize everything in the following
theorem.

Theorem A.3.10 Let G be a locally compact Hausdor! group and H ↗ G be
a closed subgroup. Then, there exists a G-quasi-invariant Radon measure on
G/H and any two such measures are equivalent.

One instance in which the discussion about invariant measures is relevant is
the following.

Definition A.3.11 (Lattice subgroup) A subgroup # ↗ G is called a lat-
tice if it is discrete and there exists a finite G-invariant Radon measure on
G/#.

Remark A.3.12 Note that, by theorem A.3.9, the existence of a G-invariant
Radon measure on G/# implies that ’G|” = ’” ℵ 1, since #, being discrete,
is unimodular. However, more can be said about G:

Proposition A.3.13 If G admits a lattice #, then G is unimodular.

Proof. Since # is discrete and unimodular, we have ’G|” ℵ 1, so # ≃ ker(’G).
The modular function thus descends to a well-defined map ’ : G/# ↘ R>0

satisfying ’(gx) = ’G(g)’(x) for g ↓ G and x ↓ G/#. Pushing forward
the finite G-invariant measure on G/# via ’ yields a finite ’G(G)-invariant
measure on R>0. This is impossible unless ’G(G) = {1}. ↭
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A.4 Technical remarks

As we stated earlier (remark A.2.8), any ε-finite Radon measure is inner regular
on all Borel sets. This implies:

Corollary A.4.1 Let G be a second-countable locally compact Hausdor! group.
Then the Haar measure on G is regular.

(A.4.2) Polish spaces and regularity. By a Polish space, we mean a
separable completely metrizable space. In Polish spaces, we have the following
regularity result:

Proposition A.4.3 Any finite Borel measure on a Polish space is regular.

In particular, since locally compact Hausdor! second countable spaces are Pol-
ish, any finite Borel measure on a locally compact Hausdor! second countable
space is regular.

Remark A.4.4 Recall that any ε-finite measure is equivalent to a probability
measure (remark A.2.4). Therefore, any ε-finite Borel measure on a Polish space
is equivalent to a Borel probability measure, which is regular by Proposition
A.4.3. This lets us state the following corollary.

Corollary A.4.5 Let G be a locally compact Hausdor! second countable group
and H ↗ G be a closed subgroup. There exists G-quasi-invariant ε-finite
measure on G/H, and any two such measures are equivalent. We summarize
this by saying that there exists a unique G-invariant measure class on G/H.

Proof. Existence follows from Theorem A.3.10. For uniqueness, any two G-
quasi-invariant measures µ and ϑ on G/H are equivalent to G-quasi-invariant
probability measures µ̃ and ϑ̃ onG/H . SinceG/H is locally compact, Hausdor!,
and second countable, these are regular by Proposition A.4.3. Therefore, again
by A.3.10, µ̃ and ϑ̃ are equivalent, and so are µ and ϑ. ↭

A.5 Unitary representations

Let H be a Hilbert space. The inner product on H is denoted by ▽↽, ⇁̸ and
is assumed to be linear in the first variable. We say that a linear operator
U : H ↘ H is unitary if it is onto and preserves the inner product, that is,
▽U↽, U⇁̸ = ▽↽, ⇁̸ for all ↽, ⇁ ↓ H. This, of course, implies boundedness of U .
The group of all unitary operators on H is denoted by U(H), which is always
endowed with the strong operator topology (namely, the topology of pointwise
convergence on H).

Definition A.5.1 (Unitary representation) A unitary representation of
a locally compact Hausdor! group G in a Hilbert space H is a homomorphism
↼ : G ↘ U(H) that is continuous (in the strong operator topology).
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Continuity in the strong operator topology means that the map

G ↘ H, g ⇒↘ ↼(g)↽

is continuous for all ↽ ↓ H. It is worth noting that strong continuity is implied
by the (apparently) weaker condition of weak continuity, that is, the condition
that the map

G ↘ C, g ⇒↘ ▽↼(g)↽, ⇁̸ (A.1)

is continuous for all ↽, ⇁ ↓ H. This is because, on U(H), the strong operator
topology and the weak operator topology coincide. The map (A.1) deserves
its own name:

Definition A.5.2 (Matrix coe!cient) Given ↼ : G ↘ U(H) a unitary
representation, and ↽, ⇁ ↓ H, the map

G ↘ C, g ⇒↘ ▽↼(g)↽, ⇁̸

is called a matrix coe”cient of ↼.

The notion of equivalence of unitary representations is defined as follows.

Definition A.5.3 (Unitary equivalence) Two unitary representations ↼1 :
G ↘ U(H1) and ↼2 : G ↘ U(H2) are said to be unitarily equivalent if there
exists an isometric surjective operator T : H1 ↘ H2 such that T↼1(g) = ↼2(g)T
for all g ↓ G. We write ↼1 ⇓ ↼2.

Unitary representations are likely to be found when studying the action of a
group G on a space S, as the following Proposition shows.

Proposition A.5.4 ([BdlHV08]) Let G be a locally compact, ε-compact
group, and (S, µ) a ε-finite G-space such that µ is invariant and such that
L2(S, µ) is separable. Then, the map

(↼(g)f)(s) = f(g↑1
s), g ↓ G, s ↓ S,

defines a unitary representation ↼ : G ↘ U(L2(S, µ)) of G in L2(S, µ) ℵ L2(S).

Example A.5.5 If a locally compact Hausdor! second countable group G

acts on a standard measurable space S with G-invariant measure µ, then

(↼(g)f)(s) = f(g↑1
s), g ↓ G, s ↓ S,

defines a unitary representation ↼ : G ↘ U(L2(S)). This is because of Theorem
A.2.9 and Proposition A.5.4.
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A.6 Character theory

The theory described in this section is usually called character theory or
Pontryagin duality. For the most part, we list some results following [EW11,
§C.3]. A more ample (and accessible) treatment can be found in [Fol16, Ch.
4].

Character theory is a rather powerful theory generalizing Fourier analysis on
the circumference S1 to locally compact Abelian (LCA) groups. Throughout
the section, G will denote a LCA group.

(A.6.1) Characters and the dual group. A character on G is a continuous
homomorphism

ω : G ↘ S1 = {z ↓ C : |z| = 1}1.

We denote by G the set of characters on G. Note that G is an Abelian group
under pointwise multiplication of characters, namely

(ω1 + ω2)(g) = ω1(g)ω2(g), g ↓ G.

It is also usual to write ▽g,ω̸ = ω(g) to emphasize that it is a pairing between
G and G. We call G the dual group to G.

Theorem A.6.2 For any compact Abelian group G, the set of characters
forms a Hilbert basis for L2(G).

Proposition A.6.3 Let X = {±1}Z>0 =


→

1 {±1}. Then, the dual group X
consists of all functions of the form pi1 · · · pin, where pi : X ↘ {±1} ≃ S1

is the projection on the i-th factor and i1, . . . , in is a (possibly empty) finite
sequence of positive integers without repetitions.

Proof. Let ω : X ↘ S1 be an arbitrary character. Since ω is a homomorphism
and x

2 = id for every x ↓ X, we have that ω(x)2 = 1, that is, ω(x) ↓ {±1}.

On the other hand, since ω is continuous, we claim that it can only depend
on a finite number of coordinates. That is, there exists N ↓ Z>0 such that if
xk = yk for all k ↗ N , then ω((xk)k) = ω((yk)k).

This claim follows from the fact that X is a compact metrizable space with
metric

d(x, y) =


0, if x = y

1
2

N(x,y)
, otherwise,

where N(x, y) = min{k ↓ Z>0 : xk ↖= yk}. Since X is compact, ω is uniformly
continuous, so there exists a ▷ > 0 such that if d(x, y) < ▷, then ω(x) = ω(y).
This assertion is equivalent to the claim.

1
Since S

1
= U(C), a character is no more than a 1-dimensional unitary representation.
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From the previous fact, we deduce that ω factors through the projection
↼N : X ↘ {±1}N on the first N coordinates:

X
εN⇑↘ {±1}N f⇑↘ {±1}.

It is immediate to see that any such homomorphism f is the multiplication of
projections pi1 · · · pin for some sequence of distinct integers 1 ↗ i1, . . . , in ↗ N .
This is what we wanted to prove. ↭

A.7 Direct integrals

This is a summary of the exposition in [Zim84, §2.3] and [BdlHV08, §F.5].

(A.7.1) Fields of Hilbert spaces. Suppose (M,µ) is a measure space and
that for each x ↓ M we have a Hilbert space Hx such that the assignment
x ⇒↘ Hx is piecewise constant, namely, that there is a disjoint decomposition
of M into measurable sets,

M =
→⊔

i=1

Mi,

such that for x, y ↓ Mi, Hx = Hy. We call this a field of Hilbert spaces over
M . By a section (or a vector field) of (Hx)x↔M we mean an assignment

M ℜ x ⇒↘ f(x) ↓ Hx.

SinceHx is piecewise constant, the notion of measurability for f is easily defined,
namely, that it be a measurable function on each Mi into the corresponding
Hilbert space2.

(A.7.2) Direct integral of a field. Let L2(M,µ, (Hx)x↔M ) be the set of
sections f such that

∫
M
↔f↔2 dµ < ↑, identifying two sections if they coincide

µ-almost everywhere. The space of square-integrable sections is also denoted
by

H =


⇐

M

Hx := L2(M,µ, (Hx)x↔M ),

and is called the direct integral of the field (Hx)x↔M . It is also a Hilbert space
under the inner product

▽f, g̸ =


M

▽f(x), g(x)̸ dµ(x).

2
Here, the Borel structure on Hx is the one induced by the weak topology, which (for

any Hilbert space) coincides with the one induced by the norm topology (see [Edg79]). This

is not the case for general Banach spaces (see [Tal78]).
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Examples A.7.3 (1) Let M be a countable set and let µ be a measure on
M such that µ({x}) ↖= 0 for all x ↓ M . Then every section is measurable and


⇐

M

Hx dµ(x) =


x↔M

Hx

is the direct sum of the Hilbert spaces Hx, x ↓ M .

(2) Let (M,µ) be a ε-finite measure space and let Hx = C for all x ↓ M . The
measurable sections are precisely the measurable complex-valued functions on
M . Then 

⇐

M

Hx dµ(x) = L
2(M,µ).

(A.7.4) Direct integral of a field of unitary representations. Suppose
now that (M,µ) is ε-finite and that for each x ↓ M we have a unitary
representation ↼x : G ↘ Hx for a locally compact Hausdor! second countable
group G and separable Hilbert spaces Hx. Similarly as before, we say that
x ⇒↘ ↼x is a measurable field of unitary representations if (x, g) ⇒↘ ↼x(g) is a
measurable function on each Mi ↙G. We can then define a new representation
of G on H =

∫
⇐

M
Hx:

↼ =


⇐

M

↼x, (↼(g)f)(x) = (↼x(g))(f(x)),

called the direct integral of the field (↼x)x↔M .

Examples A.7.5 If M is countable and µ({x}) ↖= 0 for all x ↓ M , then ↼ is
just the direct sum

⊕
x↔M

↼x on
⊕

x↔M
Hx.

A basic result on direct integrals of unitary representations is the following.

Proposition A.7.6 (Direct integral decomposition) Any unitary repre-
sentation ↼ of a locally compact Hausdor! second countable group G on a
separable Hilbert space is unitarily equivalent to one the form

∫
⇐

M
↼x for some

standard measure space M with finite measure µ, where all ↼x are irreducible.

This proposition is very useful because it allows to reduce many questions about
an arbitrary unitary representation to the case of an irreducible representation.
For instance:

Proposition A.7.7 Let ↼ =
∫
⇐

M
↼x.

(1) Suppose all matrix coe”cients of all ↼x vanish at ↑. Then all matrix
coe”cients of ↼ vanish at ↑.

(2) ↼ has a non-trivial invariant vector if and only if for x in a set of positive
measure, ↼x has a non-trivial invariant vector.
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A.8 Roots in semisimple Lie algebras

This section is dedicated to describing briefly the theory of roots in semisimple
real Lie algebras, which is needed for the general proof of Moore’s theorem.
For a complete treatment, we recommend [Hel78].

Throughout, g will denote a real semisimple Lie algebra, and Bg its Killing
form.

Definition A.8.1 (Cartan involution) A Cartan involution is an automor-
phism ( : g ↘ g such that (2 = idg and the bilinear form

▽X,Y ̸# = ⇑Bg(X,(Y ), X, Y ↓ g

is positive definite.

Proposition A.8.2 Any real semisimple Lie algebra has a Cartan involution.

(A.8.3) Cartan decomposition. Let ( be a Cartan involution, which will
be fixed from now on. Then, g decomposes as a direct sum of the eigenspaces
of (:

g = kℑ p,

where k is eigenspace of ( with eigenvalue 1 and p is eigenspace of ( with
eigenvalue ⇑1. Notice that k is a subalgebra, while p is not. This decomposition
is called the Cartan decomposition associated to (.

Lemma A.8.4 If X ↓ p, then adg(X) ↓ End(g) is ▽·, ·̸#-self-adjoint.

Proof. Take Y, Z ↓ g. Then,

▽adg(X)Y, Z̸# = ▽[X,Y ], Z̸# = ⇑Bg([X,Y ],(Z) = Bg(Y, [X,(Z])

= Bg(Y,⇑([X,Z]) = ⇑Bg(Y,([X,Z]) = ▽Y, [X,Z]̸#
= ▽Y, adg(X)Z̸#. ↭

As a consequence of this lemma, if a ≃ p is Abelian, then {adg(H) : H ↓ a}
is a family of mutually commuting self-adjoint endomorphisms of g, hence
simultaneously orthogonally diagonalizable. This motivates the following
definition.

Definition A.8.5 (Roots) Let a ≃ p be an Abelian subalgebra. Let ϖ ↓ a↓.
Define

gω = {X ↓ g : adg(H)X = ϖ(H)X for all H ↓ a}.

If gω ↖= {0}, we call ϖ a root of (g, a) and gω a root space.

We immediately have the following:

Proposition A.8.6 (1) [gω, g⇁ ] ≃ gω+⇁ for all ϖ,◁ ↓ a↓.
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A.8. Roots in semisimple Lie algebras

(2) ((gω) = g↑ω for all ϖ ↓ a↓, and (|gε : gω ↘ g↑ω is an isomorphism.

(A.8.7) Root space decomposition. Observe that a ≃ g0 = Centrg(a). Let
$ denote the set of nonzero roots of (g, a). Then, by the fact that {adg(H) :
H ↓ a} is a family of mutually commuting self-adjoint endomorphisms of g,
we have a ▽·, ·̸#-orthogonal decomposition

g = g0 ℑ


ω↔!

gω.

It also follows from the finite dimensionality of g that $ is finite.

The case where a ≃ p is maximal among all Abelian subalgebras of p is
particularly interesting, and we will assume it from now on. In this case, we
also have the following definition.

Definition A.8.8 (Maximal R-split torus) Let G be a Lie group with Lie
algebra g. For a fixed Cartan involution ( and a ≃ p a maximal Abelian
subalgebra, a maximal R-split torus of G is the connected Lie subgroup A with
Lie algebra a.

A final remark on terminology:

Remark A.8.9 Since Bg is an inner product on a, we get for each ϖ ↓ $ a
unique Hω ↓ a that represents it:

ϖ = Bg(·, Hω).

Theorem A.8.10 (” is a root system) Let a ≃ p be a maximal Abelian
subalgebra of p, and $ ≃ a↓ \ {0} the set of nonzero roots of (g, a). Then, $ is
a root system, meaning that

(1) $ spans a↓.

(2) For all ϖ,◁ ↓ $,

◁ ⇑
2Bg(Hω, H⇁)

Bg(Hω, Hω)
ϖ ↓ $.

(3) For all ϖ,◁ ↓ $,
2Bg(Hω, H⇁)

Bg(Hω, Hω)
↓ Z.

An interesting fact about root spaces is that they give a way to construct
copies of sl(2,R) inside g. More particularly, recall that

sl(2,R) = span

{
e+ =

(
0 1
0 0

)
, e↑ =

(
0 0
1 0

)
, h =

(
1 0
0 ⇑1

)}
,

with commutation relations [e+, e↑] = h, [h, e±] = ±2e±. This construction is
a consequence of the following lemma.
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A.8. Roots in semisimple Lie algebras

Lemma A.8.11 Let ϖ ↓ $ and X ↓ gω \ {0}. Let xω be the unique positive
multiple of X such that

▽xω, xω̸# =
2

Bg(Hω, Hω)
.

Let yω = ⇑((xω), and hω = 2Hε
Bg(Hε,Hε)

. Then,

[xω, yω] = hω, [hω, xω] = 2xω, [hω, yω] = ⇑2yω.

Corollary A.8.12 Let ϖ ↓ $, X ↓ gω \ {0}, xω, yω, hω be as in the previous
lemma. Then, the linear map

sl(2,R) ↘ g, e+ ⇒↘ xω, e↑ ⇒↘ yω, h ⇒↘ hω,

is an injective Lie algebra homomorphism with image

sl(2,R)X = span{xω, yω, hω}.

We call (xω, yω, hω) a sl(2,R)-triple. Choose a triple for every ϖ, {(xω, yω, hω) :
ϖ ↓ $}, such that x↑ω = yω for all ϖ. In this case, call g↗ω = Rxω ↗ gω. Then
we have the following proposition.

Proposition A.8.13 The space

g↗ = aℑ


ω↔!

g↗ω

is a Lie subalgebra of g and it is semisimple. Moreover, if g = Lie(G) for some
semisimple Lie group G, then the connected Lie subgroup G

↗ corresponding to
g↗ is closed in G.

Proof. (Sketch of proof) Lie subalgebra: From the construction, it is clear that
[a, a] = 0, [a, g↗ω] ≃ g↗ω, [g

↗
ω, g

↗

⇁
] ≃ g↗

ω+⇁
(or 0), and [g↗ω, g

↗
↑ω] ≃ a. Therefore g↗

is closed under brackets.

Semisimple: Let r↗ be the solvable radical of g↗. Then, r↗ ≃ a (if not, some
xω ↓ r↗, then hω = [xω, yω] ↓ r↗, and also ⇑2yω ↓ r↗, yielding a copy of sl(2,R)
inside r↗). Therefore, [r↗, g↗ω] ≃ r↗ ′ g↗ω = 0 and [r↗, a] = 0, so r↗ ≃ Z(g↗). Now,
for Z ↓ r↗ and ϖ ↓ $, 0 = [Z, xω] = ϖ(Z)xω, so ϖ(Z) = 0 for all ϖ ↓ $. Since
$ spans a↓, we have Z = 0.

Closedness of G↗: any connected semisimple Lie subgroup of a semisimple
group is closed (see [ora15]). ↭

We end this section with a small proposition that is also useful in the general
proof of Moore’s theorem.

Proposition A.8.14 Given H ↓ a \
⋃

ω↔! kerϖ, there exists S ≃ $ such that
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A.9. An auxiliary result

(1) S is a basis of a↓.

(2) S ≃ $+(H) = {ϖ ↓ $ : ϖ(H) > 0} (S consists of H-positive roots).

(3) For all ϖ,◁ ↓ S, ϖ+ ◁ /↓ $.

Proof. We will construct S inductively, ensuring that S ≃ $+(H).

First, observe that there is a partial order on $+(H) given by ϖ A ◁ if
ϖ(H) > ◁(H).

We begin by picking ϖ1 ↓ $+(H) maximal with respect to this order (that is,
with the highest possible value ϖ1(H)).

Now suppose we have constructed linearly independent elements ϖ1, . . . ,ϖr ↓
$+(H), where each ϖi is maximal with respect to the order among all roots
outside the span of ϖ1, . . . ,ϖi↑1. Note that ϖi+ϖj is not a root for any i, j ↗ r,
since this would contradict the maximality of either ϖi or ϖj . If r = dim a,
then we are done. Otherwise, we pick ϖr+1 ↓ $+(H) maximal with respect to
the order among all roots outside the span of ϖ1, . . . ,ϖr.

At the end of this process, we have constructed the desired set S. ↭

A.9 An auxiliary result

This section is dedicated to a small auxiliary result used in Example 1.1.6 (4).

Proposition A.9.1 For each k ↓ Z
n \ {0}, the set

SL(n,Z)k = {ϱk : ϱ ↓ SL(n,Z)}

is infinite.

Proof. We begin by considering the special case k = de1 = (d, 0, . . . , 0) for
d ↓ Z \ {0}. The matrix

ϱ =




1 0
1 1

0

0 In↑2



 ↓ SL(n,Z)

which has a 2↙ 2 block in the upper-left corner, the (n⇑ 2)↙ (n⇑ 2) identity
matrix in the bottom-right corner, and zeroes elsewhere, satisfies

ϱ
m
k = dϱ

me1 = d(e1 +me2) = k + dme2, m ↓ Z>0,

all distinct elements of SL(n,Z)k.
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A.9. An auxiliary result

Now, suppose that k is not a multiple of e1 = (1, 0, . . . , 0). Let

J =





1 1 0 · · · 0
0 1 1 · · · 0
0 0 1 · · · 0
...

...
...

. . . 1
0 0 0 · · · 1




↓ SL(n,Z)

be a n↙n upper triangular Jordan matrix with ones in the diagonal. We claim
that the points Jm

k ↓ SL(n,Z)k, m ↓ Z>0, are all distinct.

Indeed, if Jm
k = J

ϖ
k for some m > 0, then J

m↑ϖ
k = k, so k would be a

1-eigenvector of Jm↑ϖ. The proof will conclude once we prove that the 1-
eigenspace of Jr for any r ↓ Z>0 is exactly Re1, yielding a contradiction with
the fact that k was assumed not to be a multiple of e1.

To calculate the 1-eigenspace of Jr, observe that J = In +N , where In is the
n↙ n identity matrix and

N =





0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . . 1
0 0 0 · · · 0




.

Observe that, in general, N j shifts the ones to the j-th superdiagonal (so,
in particular, Nn = 0). Then, since In and N commute, one can apply the
binomial theorem to obtain

J
r = (In +N)r =

r↑1∑

j=0

(
r

j

)
N

j =






r

0

 
r

1

 
r

2


· · ·


r

n↑1



0

r

0

 
r

1


· · ·


r

n↑2



0 0

r

0


· · ·


r

n↑3



...
...

...
. . .

...

0 0 0 · · ·

r

0







.

This forces any vector v = (v1, . . . , vn)t satisfying (Jr ⇑ In)v = 0 to obey the
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following cascade of equations:

rv2 +

(
r

2

)
v3 +

(
r

3

)
v4 + · · ·+

(
r

n⇑ 1

)
vn = 0,

rv3 +

(
r

2

)
v4 + · · ·+

(
r

n⇑ 2

)
vn = 0,

rv4 +

(
r

2

)
v5 + · · ·+

(
r

n⇑ 3

)
vn = 0,

...

rvn = 0,

which implies that vn = · · · = v2 = 0, and so v ↓ Re1. ↭
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Appendix B

Observations

This last chapter is a collection of three observations I made while reading
Zimmer’s text. They are not particularly important, and emerged only because
at some points the assumptions are not stated explicitly. We explore them here,
studying whether the claims hold without the implicit, unstated assumptions,
for the sake of completeness.

Remark B.0.1 The author does not explicitly assume that the group G is
Hausdor!. Some authors, like Folland [Fol16], follow the convention of saying
“locally compact group” when they mean “locally compact Hausdor! group”,
the reason being the following: a locally compact group not being Hausdor!
is not a big restriction, since then G/{e} would be Hausdor! (and G and
G/{e} are measurably isomorphic: since every open set in G is {e}-invariant,
the Borel ε-algebra of G consists exactly of the inverse image of the Borel
ε-algebra of G/{e}). We’re anyway mostly interested in the case of Lie groups,
which are Hausdor!.

We always assume thatG is Hausdor! for convenience reasons. For instance, the
Riesz-Markov-Kakutani Representation Theorem requires G to be Hausdor!.

Remark B.0.2 Lemma 1.2.13, as stated in the main text, requires the as-
sumption that (Wk)k↔N forms a neighborhood basis at s. In Zimmer’s original
text [Zim84], it is not clear whether the assumption is this or that (Wk)k↔N is
a decreasing sequence of open sets with


k↔N

Wk = {s}. We assert that the
latter assumption is insu”cient for the conclusion to hold.

To see why, consider G = R acting on S = C by addition. Let N = [⇑ε, ε] for
some ε > 0, and let

Wk = B

(
1,

1

k

)
→
(
B

(
i,
1

k

)
\ {i}

)
,

the union of the disk of center 1 and radius 1/k and the punctured disk of
center i and radius 1/k. Then, Wk is a decreasing sequence of open sets with
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
k↔N

Wk = {1}. However, i ↓ N +Wk for all k ↓ N, so i ↓


k↔N
(N +Wk),

but i /↓ R+ 1 = R.

Remark B.0.3 In the statement of Proposition 2.1.3, the author does not
explicitly assume second-countability of G. This creates a small issue with
the fact that ergodicity is only defined for ε-finite measures, and the Haar
measure of G might not be ε-finite unless G is second countable (hence the
measure on G/H might not be ε-finite, think of G discrete and uncountable,
and H = {e}).

Furthermore, in the proof, he uses Fubini’s theorem, which requires the mea-
sures to be ε-finite. He also uses the existence of a measurable section of
G ↘ G/H, which (in principle) requires G to be second countable.

Moreover, even if we extend the definition of ergodicity to include non-ε-finite
measures, the claim doesn’t hold. Indeed:

Let Rd be the additive group of real numbers with the discrete topology, and
R
↓ be the multiplicative group of non-zero real numbers. Let G = Rd ↙ R

↓,
H = {0}↙R

↓ ⇓ R
↓ ↗ G, and S = R with its usual topology and the Lebesgue

measure. We have that G/H ⇓ Rd. Let

G ⊋ S, (x, y) · s = ys,

therefore H ⊋ S, (0, y) · s = ys,

therefore G ⊋ S ↙G/H, (x, y) · (s, t) = (ys, x+ t).

The action of H on S is ergodic, since the orbit H · 1 = R \ {0} is conull in S.
However, the action of G on S ↙G/H is not ergodic, since the set {0}↙G/H

is invariant, but neither null nor conull in S ↙G/H ⇓ R↙ Rd.

Remark B.0.4 In the statement of Lemma 2.2.5, the author only assumes
explicitly that H is locally compact. This again creates a small issue with the
fact that ergodicity is only defined for ε-finite measures, and the Haar measure
of H might not be ε-finite unless H is second countable.

In the proof of “ergodic =△ dense”, he states that H/# is metrizable. This,
even though doesn’t a!ect the proof (the proof only really uses local compact-
ness), is not true in general unless H is locally compact and second countable
(in that case, H/# would be locally compact, Hausdor! and second countable,
hence Polish). Indeed, take # = {e} and H an uncountable product of non-
trivial compact Hausdor! groups, such as H =


i↔R

{1,⇑1}. Then, H/# = H

is not metrizable.

In the proof of “dense =△ ergodic”, he identifies the dual of L1(H) with L→(H)
and uses Fubini’s theorem on H ↙A, which requires the measure to be ε-finite
(unless we observe some technicalities which here don’t work, see [Fol16, §2.3]).
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However, in this case, the claim is still true without second countability, and
the following argument works.

Suppose # ↗ H is dense in H, and suppose there exists A ≃ H Borel, #-
invariant but neither null not conull. Let m be a left Haar measure on H.

Define a Borel measure ϑ on H by ϑ(B) = m(A ′B) for Borel B ≃ H.

Claim 1. ϑ is Radon.

Proof of claim. For every compact K ≃ H, we have ϑ(K) = m(A ′ K) ↗
m(K) < ↑.

Fix a Borel set B. To prove outer regularity for B, let ε > 0 and choose an
open set U ∋ B with m(U) ↗ m(B) + ε (by outer regularity of m). Then,
ϑ(U) = ϑ(B) + ϑ(U \B) ↗ ϑ(B) +m(U \B) ↗ ϑ(B) + ε.

Fix an open set U . To prove inner regularity for U , let ε > 0 and choose a
compact set K ≃ U with m(K) ⇔ m(U)⇑ ε (by inner regularity of m on open
sets). Then, ϑ(U) = ϑ(K) + ϑ(U \K) ↗ ϑ(K) +m(U \K) ↗ ϑ(K) + ε. This
proves the claim.

Claim 2. ϑ is #-invariant.

Proof of claim. Let ϱ ↓ # and let B ≃ H be Borel. Then

ϑ(ϱB) = m

A ′ (ϱB)



[left-invariance of m] = m

ϱ
↑1(A ′ ϱB)



= m

ϱ
↑1

A ′B


[#-invariance of A] = m

A ′B



= ϑ(B),

The claim is proven.

Claim 3. ϑ is H-invariant.

Proof of claim. To prove H-invariance, we will show that ϑ(g↓ς) = ϑ(ς) for
all ς ↓ Cc(H), viewing ϑ as a positive linear functional on Cc(H) and defining
(g↓ς)(x) = ς(g↑1

x) for g ↓ H, x ↓ H.

Fix ς ↓ Cc(H) and define F : H ↘ R by

F (g) = ϑ(g↓ς) =



H

ς(g↑1
x) dϑ(x),

which we aim to prove to be constant on H.

By #-invariance of ϑ, we have that F (ϱ) = F (e) for all ϱ ↓ #. If we show that
F is continuous, then F will be constant on H by density of # in H , hence the
claim will be proven.
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Fix g0 ↓ H. Let K = suppς ≃ H, which is compact. Let V be a compact
neighborhood of e ↓ H . For g ↓ g0V , we have supp(g↓ς) = gK ≃ g0V K =: C.
Note that C is compact, and in particular ϑ(C) < ↑.

The map
g0V ↙ C ↘ R, (g, x) ⇒↘ ς(g↑1

x),

is continuous. By compactness of C, it follows that

g ⇒↘ sup
x↔C

|ς(g↑1
x)⇑ ς(g↑1

0 x)|

is continuous as a function g0V ↘ R.

Therefore, since g0V is a neighborhood of g0 in H, there exists an open
neighborhood W ≃ g0V of g0 (W open in H) such that

sup
x↔C

ς(g↑1
x)⇑ ς(g↑1

0 x)
 ↗ ε

max{1, ϑ(C)} for all g ↓ W.

Hence, for g ↓ W ,

|F (g)⇑ F (g0)| =



C


ς(g↑1

x)⇑ ς(g↑1
0 x)


dϑ(x)



↗


C

ς(g↑1
x)⇑ ς(g↑1

0 x)
 dϑ(x)

↗ ϑ(C) · sup
y↔C

ς(g↑1
y)⇑ ς(g↑1

0 y)


↗ ϑ(C) · ε

max{1, ϑ(C)}
↗ ε.

This concludes the proof of the claim.

To conclude, we have that ϑ is Radon and H-invariant. Observe that ϑ(A) =
m(A) ↖= 0 by the assumption that A is not null. Therefore, ϑ is nonzero, hence
a left Haar measure for H. By uniqueness of Haar measures (Theorem A.3.2),
we have that ϑ = c ·m for some constant c > 0. Since A is not conull, we have
that m(H \A) > 0. But

0 = m(∞) = m(A ′ (H \A)) = ϑ(H \A) = c ·m(H \A) > 0,

which is a contradiction.
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